你的位置:首頁 > 電路保護(hù) > 正文

線性光耦原理與電路設(shè)計(jì)

發(fā)布時(shí)間:2019-08-20 責(zé)任編輯:wenwei

【導(dǎo)讀】光隔離是一種很常用的信號(hào)隔離形式。常用光耦器件及其外圍電路組成。由于光耦電路簡單,在數(shù)字隔離電路或數(shù)據(jù)傳輸電路中常常用到,如UART協(xié)議的20mA電流環(huán)。對于模擬信號(hào),光耦因?yàn)檩斎胼敵龅木€形較差,并且隨溫度變化較大,限制了其在模擬信號(hào)隔離的應(yīng)用。
 
1. 線形光耦介紹
 
光隔離是一種很常用的信號(hào)隔離形式。常用光耦器件及其外圍電路組成。由于光耦電路簡單,在數(shù)字隔離電路或數(shù)據(jù)傳輸電路中常常用到,如UART協(xié)議的20mA電流環(huán)。對于模擬信號(hào),光耦因?yàn)檩斎胼敵龅木€形較差,并且隨溫度變化較大,限制了其在模擬信號(hào)隔離的應(yīng)用。
 
對于高頻交流模擬信號(hào),變壓器隔離是最常見的選擇,但對于支流信號(hào)卻不適用。一些廠家提供隔離放大器作為模擬信號(hào)隔離的解決方案,如ADI的AD202,能夠提供從直流到幾K的頻率內(nèi)提供0.025%的線性度,但這種隔離器件內(nèi)部先進(jìn)行電壓-頻率轉(zhuǎn)換,對產(chǎn)生的交流信號(hào)進(jìn)行變壓器隔離,然后進(jìn)行頻率-電壓轉(zhuǎn)換得到隔離效果。集成的隔離放大器內(nèi)部電路復(fù)雜,體積大,成本高,不適合大規(guī)模應(yīng)用。
 
模擬信號(hào)隔離的一個(gè)比較好的選擇是使用線形光耦。線性光耦的隔離原理與普通光耦沒有差別,只是將普通光耦的單發(fā)單收模式稍加改變,增加一個(gè)用于反饋的光接受電路用于反饋。這樣,雖然兩個(gè)光接受電路都是非線性的,但兩個(gè)光接受電路的非線性特性都是一樣的,這樣,就可以通過反饋通路的非線性來抵消直通通路的非線性,從而達(dá)到實(shí)現(xiàn)線性隔離的目的。
 
市場上的線性光耦有幾中可選擇的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。這里以HCNR200/201為例介紹。
 
2. 芯片介紹與原理說明
 
HCNR200/201的內(nèi)部框圖如下所示
 
線性光耦原理與電路設(shè)計(jì)
 
其中1、2引作為隔離信號(hào)的輸入,3、4引腳用于反饋,5、6引腳用于輸出。1、2引腳之間的電流記作IF,3、4引腳之間和5、6引腳之間的電流分別記作IPD1和IPD2。輸入信號(hào)經(jīng)過電壓-電流轉(zhuǎn)化,電壓的變化體現(xiàn)在電流IF上,IPD1和IPD2基本與IF成線性關(guān)系,線性系數(shù)分別記為K1和K2,即
 
線性光耦原理與電路設(shè)計(jì)
 
K1與K2一般很?。℉CNR200是0.50%),并且隨溫度變化較大(HCNR200的變化范圍在0.25%到0.75%之間),但芯片的設(shè)計(jì)使得K1和K2相等。在后面可以看到,在合理的外圍電路設(shè)計(jì)中,真正影響輸出/輸入比值的是二者的比值K3,線性光耦正利用這種特性才能達(dá)到滿意的線性度的。
 
HCNR200和HCNR201的內(nèi)部結(jié)構(gòu)完全相同,差別在于一些指標(biāo)上。相對于HCNR200,HCNR201提供更高的線性度。
 
采用HCNR200/201進(jìn)行隔離的一些指標(biāo)如下所示:
 
* 線性度:HCNR200:0.25%,HCNR201:0.05%;
* 線性系數(shù)K3:HCNR200:15%,HCNR201:5%;
* 溫度系數(shù):-65ppm/oC;
* 隔離電壓:1414V;
* 信號(hào)帶寬:直流到大于1MHz。
 
從上面可以看出,和普通光耦一樣,線性光耦真正隔離的是電流,要想真正隔離電壓,需要在輸出和輸出處增加運(yùn)算放大器等輔助電路。下面對HCNR200/201的典型電路進(jìn)行分析,對電路中如何實(shí)現(xiàn)反饋以及電流-電壓、電壓-電流轉(zhuǎn)換進(jìn)行推導(dǎo)與說明。
 
3. 典型電路分析
 
Agilent公司的HCNR200/201的手冊上給出了多種實(shí)用電路,其中較為典型的一種如下圖所示:
 
 
線性光耦原理與電路設(shè)計(jì)
 
設(shè)輸入端電壓為Vin,輸出端電壓為Vout,光耦保證的兩個(gè)電流傳遞系數(shù)分別為K1、K2,顯然,,和之間的關(guān)系取決于和之間的關(guān)系。
 
將前級(jí)運(yùn)放的電路提出來看,如下圖所示:
 
線性光耦原理與電路設(shè)計(jì)
 
設(shè)運(yùn)放負(fù)端的電壓為,運(yùn)放輸出端的電壓為,在運(yùn)放不飽和的情況下二者滿足下面的關(guān)系:
 
Vo=Voo-GVi  (1)
 
其中是在運(yùn)放輸入差模為0時(shí)的輸出電壓,G為運(yùn)放的增益,一般比較大。
 
忽略運(yùn)放負(fù)端的輸入電流,可以認(rèn)為通過R1的電流為IP1,根據(jù)R1的歐姆定律得:
 
線性光耦原理與電路設(shè)計(jì)
 
通過R3兩端的電流為IF,根據(jù)歐姆定律得:
 
線性光耦原理與電路設(shè)計(jì)
 
其中,為光耦2腳的電壓,考慮到LED導(dǎo)通時(shí)的電壓基本不變,這里的作為常數(shù)對待。
 
根據(jù)光耦的特性,即
 
K1=IP1/IF  (4)
 
將和的表達(dá)式代入上式,可得:
 
線性光耦原理與電路設(shè)計(jì)
 
上式經(jīng)變形可得到:
 
線性光耦原理與電路設(shè)計(jì)
 
將的表達(dá)式代入(3)式可得:
 
線性光耦原理與電路設(shè)計(jì)
 
考慮到G特別大,則可以做以下近似:
 
線性光耦原理與電路設(shè)計(jì)
 
這樣,輸出與輸入電壓的關(guān)系如下:
 
線性光耦原理與電路設(shè)計(jì)
 
可見,在上述電路中,輸出和輸入成正比,并且比例系數(shù)只由K3和R1、R2確定。一般選R1=R2,達(dá)到只隔離不放大的目的。
 
4. 輔助電路與參數(shù)確定
 
上面的推導(dǎo)都是假定所有電路都是工作在線性范圍內(nèi)的,要想做到這一點(diǎn)需要對運(yùn)放進(jìn)行合理選型,并且確定電阻的阻值。
 
4.1 運(yùn)放選型
 
運(yùn)放可以是單電源供電或正負(fù)電源供電,上面給出的是單電源供電的例子。為了能使輸入范圍能夠從0到VCC,需要運(yùn)放能夠滿擺幅工作,另外,運(yùn)放的工作速度、壓擺率不會(huì)影響整個(gè)電路的性能。TI公司的LMV321單運(yùn)放電路能夠滿足以上要求,可以作為HCNR200/201的外圍電路。
 
4.2 阻值確定
 
電阻的選型需要考慮運(yùn)放的線性范圍和線性光耦的最大工作電流IFmax。K1已知的情況下,IFmax又確定了IPD1的最大值IPD1max,這樣,由于Vo的范圍最小可以為0,這樣,由于考慮到IFmax大有利于能量的傳輸,這樣,一般取最大值。
另外,由于工作在深度負(fù)反饋狀態(tài)的運(yùn)放滿足虛短特性,因此,考慮IPD1的限制,這樣,R2的確定可以根據(jù)所需要的放大倍數(shù)確定,例如如果不需要放大,只需將R2=R1即可。
 
另外由于光耦會(huì)產(chǎn)生一些高頻的噪聲,通常在R2處并聯(lián)電容,構(gòu)成低通濾波器,具體電容的值由輸入頻率以及噪聲頻率確定。
 
4.3 參數(shù)確定實(shí)例
 
假設(shè)確定Vcc=5V,輸入在0-4V之間,輸出等于輸入,采用LMV321運(yùn)放芯片以及上面電路,下面給出參數(shù)確定的過程。
 
* 確定IFmax:HCNR200/201的手冊上推薦器件工作的25mA左右;
* 確定R3:R3=5V/25mA=200;
* 確定R1:;
* 確定R2:R2=R1=32K。
 
5. 總結(jié)
 
本文給出了線性光耦的簡單介紹以及電路設(shè)計(jì)、參數(shù)選擇等使用中的注意事項(xiàng)與參考設(shè)計(jì),并對電路的設(shè)計(jì)方法給出相應(yīng)的推導(dǎo)與解釋,供廣大電子工程師參考。
 
 
推薦閱讀:
 
EMC元器件有源器件選型概述
老工程師教你如何“馴服”振蕩運(yùn)算放大器
開關(guān)轉(zhuǎn)換時(shí),最大效率與最小電磁干擾如何“兼得”?
告別“插電”煩惱,這些優(yōu)勢無線功率傳輸都具備!
穩(wěn)壓二極管基礎(chǔ)知識(shí),快來復(fù)習(xí)啦!
要采購變壓器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉