你的位置:首頁 > 電路保護 > 正文

利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案

發(fā)布時間:2021-03-10 來源:Teledyne e2v 責任編輯:lina

【導讀】整個20世紀,電能已經(jīng)變得無處不在,成為了日常生活的必需品。不難想象,如今支持我們每天的電能需求的電力網(wǎng)絡極為復雜。人們需要處理多種問題,如維護或替換老舊的系統(tǒng)、連接舊設施和新的綠色發(fā)電解決方案、支持和應對能源需求的波動、長距離傳輸能源、擁擠地區(qū)的輸配電和對應標準以及保證客戶的整體滿意度。
    
引言
 
整個20世紀,電能已經(jīng)變得無處不在,成為了日常生活的必需品。不難想象,如今支持我們每天的電能需求的電力網(wǎng)絡極為復雜。人們需要處理多種問題,如維護或替換老舊的系統(tǒng)、連接舊設施和新的綠色發(fā)電解決方案、支持和應對能源需求的波動、長距離傳輸能源、擁擠地區(qū)的輸配電和對應標準以及保證客戶的整體滿意度。在過去的幾十年里,電力服務中斷一直是人們關注的焦點,并推動了監(jiān)測、預測和預防設備問題的研究。一種被稱為局部放電(PD)的物理現(xiàn)象已經(jīng)被用于檢測這些問題。本文將簡要介紹局部放電的概念和優(yōu)點,以及不同的捕捉技術,著重介紹超高頻(UHF)系統(tǒng),特別是其數(shù)據(jù)采集系統(tǒng),然后介紹構(gòu)建這種系統(tǒng)的數(shù)據(jù)轉(zhuǎn)換解決方案。
 
 
 利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
 
局部放電以及為什么應該檢測局部放電
 
局部放電是發(fā)生在電氣設備(電纜、開關設備、斷路器等)絕緣層的放電。由于這種放電沒有完全連接兩個導電端子,因此被稱為局部放電。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
圖1:局部放電
 
局部放電可能發(fā)生在電網(wǎng)的許多部分,通常是傳輸高壓并被某種絕緣介質(zhì)(固體、液體、空氣)包圍的地方。由于局部放電的局部性和重復性,隨著時間的推移將導致變壓器、電力線纜和附件的絕緣損壞。局部放電是表征將來需更換材料的故障的良好指標,非常值得監(jiān)測。人們可以通過局部電網(wǎng)的中斷盡早發(fā)現(xiàn)故障并進行預防性更換,對電力用戶產(chǎn)生最小的影響。
 
如今,現(xiàn)代電纜的制造工藝非常成熟,很少會生產(chǎn)出有缺陷的產(chǎn)品,這些產(chǎn)品通常在到達安裝環(huán)節(jié)之前就被檢測出并丟棄。局部放電導致的最重要的問題通常發(fā)生在接頭和附件處。
如前所述,監(jiān)測任何類型電網(wǎng)的局部放電,都有助于制定維護計劃。此外,通過確定局部放電的位置,有助于快速發(fā)現(xiàn)和解決問題。這對于地下部分特別有用,因為挖掘的成本高昂,還會產(chǎn)生如道路封閉等其他的影響。
 
如何檢測并定位局部放電
 
當前有多種技術可檢測局部放電,每種技術都有自己的優(yōu)點、挑戰(zhàn)和使用案例。本文主要關注的是超高頻(UHF)技術,這種技術需要一個高速檢測系統(tǒng)來正確檢測捕捉的短脈沖。表1簡單總結(jié)了檢測局部放電的不同技術。注意以下列出的技術并不適用于所有類型的設備。例如,UHF和光學技術更適用于氣體絕緣(GIS)超高壓(EHV)變壓器。此外,可以使用多種技術提高整個監(jiān)視系統(tǒng)的性能。關于不同技術的使用案例、優(yōu)點和挑戰(zhàn)的更多細節(jié),請參考參考文獻[A]、[B]和[C]。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
表1:主要局部放電檢測技術概述
 
原則上,UHF局部放電檢測器可監(jiān)測產(chǎn)生的短放電脈沖(通常持續(xù)幾納秒)。由于脈沖時間非常短,放電信號的頻率范圍可從直流跨越到幾GHz。使用信號的UHF部分有很多優(yōu)點。這個頻段受干擾的影響小,且更容易采取減少干擾的措施。此外,采用最新的UHF傳感器和數(shù)據(jù)轉(zhuǎn)換器技術可實現(xiàn)高靈敏度,而且UHF檢測系統(tǒng)可實現(xiàn)更好的定位精度和默認模式識別。對于電網(wǎng)監(jiān)視,這意味著能更好地找出故障發(fā)生的位置,并評估它的影響。
 
局部放電定位可通過多種技術實現(xiàn)。每種技術都需要多個傳感通道,并通過比較每個通道捕獲的脈沖的不同參數(shù)確定位置。大多數(shù)解決方案至少需要4個傳感通道,以實現(xiàn)1米或更優(yōu)的局部放電定位精度。
 
當前最引入注目的解決方案是三邊測量技術。脈沖從局部放電到傳感通道位置的傳播時間(飛行時間)與兩者之間的距離有關。通過比較不同傳感通道之間脈沖到達的相對時間,可推斷出局部放電的位置,一般能實現(xiàn)1米或更優(yōu)的精度(參考文獻[D])。
 
另一種解決方案是考慮不同傳感通道捕獲的信號強度。信號強度與局部放電與傳感通道之間的距離有關。因此,通過比較不同傳感通道捕獲的信號強度,可準確定位局部放電事件。在過去的幾年里發(fā)表了很多關于這種技術的研究論文(參考文件[E]、[F]和[G])。
 
UHF采集系統(tǒng)是檢測性能的關鍵
 
采集系統(tǒng)的目標是準確捕獲包含局部放電信息的局部放電傳感器的模擬輸出。經(jīng)過信號調(diào)理環(huán)節(jié)后,模擬信號被轉(zhuǎn)換到數(shù)字域,然后被處理,以判斷是否發(fā)生局部放電,并獲取局部放電的位置和任何其他感興趣的參數(shù)。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
圖2:采集系統(tǒng)的高級框圖
 
采集系統(tǒng)中最關鍵的部件之一是ADC(模數(shù)轉(zhuǎn)換器),用于將傳感器的輸出轉(zhuǎn)換成主機PC能夠處理的數(shù)字數(shù)據(jù)流。由于局部放電的脈沖特性,其UHF分量可達到1ns以下的瞬態(tài)時間。為了準確捕獲脈沖,需要考慮ADC的多個參數(shù):
 
-3dB模擬輸入帶寬:為了準確捕捉脈沖頻率,ADC的帶寬需要足夠高。如果脈沖頻率高于ADC的帶寬,部分脈沖信息會被系統(tǒng)過濾掉。一個經(jīng)驗法則是,ADC的帶寬需要超過脈沖的最大頻率分量的5到10倍,以獲得足夠的精度。下式可用于將脈沖瞬態(tài)時間轉(zhuǎn)換為頻率:

 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
 
Bp是脈沖的帶寬,Tr是脈沖的10-90%的上升/下降時間。這個公式基于RC低通濾波器響應,是一種簡單估算捕獲脈沖所需的帶寬的方法。例如,10-90%的上升時間是1ns,脈沖的帶寬是350MHz,要準確恢復脈沖,ADC的-3dB模擬輸入帶寬應在1.75~3.5GHz之間。
請注意,不同的系統(tǒng)有不同的要求,因此對更高的ADC帶寬的需求也不同。一般來說,我們希望從設備中獲得的信息越多,所需的脈沖捕獲的精度就越高,對帶寬的要求也就越高。反之,如果設備的目標僅僅是識別是否發(fā)生局部放電,達到2到3倍脈沖頻率的帶寬就足夠了。
分辨率:也可以理解為垂直(電壓)分辨率。它表示每次采樣的值的精確度。更高的分辨率可以提高轉(zhuǎn)換的精度。例如,分辨率為10位的ADC對應滿量程的1024(210)個可能的值。假設滿量程電壓為1V,每個步長對應977µV,對于理想ADC,輸入信號以+/-488µV的垂直誤差進行采樣和轉(zhuǎn)換。由此,容易理解若是增加2位的分辨率,精度將提高4倍(212 = 4096)。雖然為了捕捉更大的脈沖而提高滿量程電壓會降低電壓分辨率,但應該注意的是,垂直分辨率表征的是理論上的性能。在實際應用中,不同類型的噪聲會影響ADC的性能。因此,在評估垂直分辨率時,最好同時考慮ENOB(有效位數(shù)),因為它包含了噪聲的影響。
ENOB的需求。一般來說,ENOB越大,處理的復雜度越高,而從局部放電脈沖中提取的信息也越詳細。
 
●采樣速度:也可以理解為水平(時間)分辨率。它表示ADC每秒采樣的次數(shù)。較高的采樣率對應較短的連續(xù)采樣的持續(xù)時間,以及更高的脈沖時序精度。理論上,根據(jù)香農(nóng)-奈奎斯特定理,恢復給定脈沖的最小采樣速度是2 * Bp。在我們前面的350MHz脈沖寬度的例子中,700Msps采樣率的ADC即可滿足要求。如前所述,設備的目標決定需求。如果需要從脈沖中提取更復雜的信息,如局部放電的位置、局部放電的能量或能量模式等,則需要更高的采樣速度。
 
●通道數(shù):可簡單理解為可用的采集通道的數(shù)量。多通道局部放電系統(tǒng)的一個主要優(yōu)點是,當使用4個通道時,可通過三邊測量技術確定故障發(fā)生的位置。此外,更多的通道數(shù)可實現(xiàn)同時測量,對大型系統(tǒng)來說非常有用,例如在變電站控制大樓采集所有局部放電信息,和/或傳輸這些信息以進行遠程監(jiān)控。
 
采集系統(tǒng)的另一個關鍵部分是與ADC接口的前端處理單元。在大多數(shù)情況下會使用FPGA完成這一工作。FPGA與ADC連接,完成第一階段的處理,然后把處理后的數(shù)據(jù)發(fā)給主機PC,主機PC會對數(shù)據(jù)進行額外的后期處理、存儲和轉(zhuǎn)譯,決定當檢測到局部放電時應如何采取行動。FPGA的并行處理能力和高級接口選項特別適合這種應用。
 
此外,F(xiàn)PGA需要能夠處理高速ADC產(chǎn)生的海量數(shù)據(jù)。例如,以2Gsps采樣率工作的四通道10位ADC會產(chǎn)生80Gbps或10Gbps的原始數(shù)據(jù)。FPGA能夠與ADC對接,恢復所有數(shù)據(jù),進行第一級實時處理(如數(shù)字濾波、非線性噪聲抑制、數(shù)字基線穩(wěn)定等),然后根據(jù)復雜的觸發(fā)機制選擇有用的數(shù)據(jù)。在某些情況下,為了進一步減少傳輸?shù)街鳈CPC的數(shù)據(jù)量,第二級處理(如脈沖分析)也需要在FPGA中執(zhí)行。當然,也可以選擇在主機PC中執(zhí)行第二級處理。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
圖3:處理步驟概述
 
除了上述的兩個關鍵部分,采集系統(tǒng)還包括其他的組件,如調(diào)理模擬信號的前端、支持更大數(shù)據(jù)存儲的板上存儲器、與主機PC匹配的特定接口,和支持這一解決方案的所有的電源模塊,如圖2所示。
 
Teledyne面向局部放電設備制造商提供兩種類型的解決方案:
●Teledyne SP Devices開發(fā)高性能數(shù)字采集卡(數(shù)字化儀),將ADC和FPGA集成到一個支持信號捕獲和處理的完整硬件解決方案中。這些數(shù)字化儀可直接與主機PC連接,并提供強大的固件功能和軟件解決方案。它們通過加速產(chǎn)品設計、縮短上市時間并降低項目層面的風險,為局部放電設備帶來額外的優(yōu)點。
 
●Teledyne e2v開發(fā)高速模數(shù)轉(zhuǎn)換器。這些ADC為局部放電設備帶來很多優(yōu)點,適用于不犧牲性能卻追求低成本、小尺寸的設備。
 
下面的兩個章節(jié)將分享更多這兩種解決方案的細節(jié)。
 
Teledyne SP Devices – 數(shù)字化儀/采集卡:
位于瑞典的Teledyne SP Devices在過去的15年里一直致力于開發(fā)高速數(shù)字化儀,專注于高速解決方案及其靈活性,使客戶能根據(jù)特定的應用情況優(yōu)化數(shù)字化儀。如表2所示,這三款數(shù)字化儀特別為UHF局部放電檢測設備提供了很好的解決方案。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
表2:適用于UHF局部放電系統(tǒng)的Teledyne SP Devices數(shù)字化儀
 
如上表所示,ADQ8-4X提供了一個成本優(yōu)化的解決方案,具有緊湊的尺寸和較多的通道數(shù)量。它還支持多個板卡和機箱之間的同步,精度為200ps,為大區(qū)域的多個復雜檢測系統(tǒng)的設計提供便利。除此之外,還可提供8通道1Gsps采樣率的版本(ADQ8-8C)。
 
ADQ14提供了比ADQ8更高的分辨率,因此能夠?qū)崿F(xiàn)更精確的脈沖測量。它可配置為單通道、雙通道或四通道,后者更適合于需定位或量化局部放電效應的系統(tǒng)。
 
最后,為了達到極致的性能,ADQ7DC提供更少的通道數(shù),但具有高達10Gsps的采樣速度,可用于高性能、大帶寬的設備。
 
這三款數(shù)字化儀都有不同的固件選項,包含一般的采集和觸發(fā)功能,以及固件開發(fā)工具選項,用戶可以在板上FPGA上實現(xiàn)自己的定制算法。在軟件方面,易于使用的Digitizer Studio GUI可方便地配置、采集、顯示、分析和儲存數(shù)據(jù)。另外,API和設計例程可幫助優(yōu)化軟件,以滿足更復雜和/或?qū)S孟到y(tǒng)的需求。
 
此外,ADQ14和ADQ7DC都可提供10GbE的形狀參數(shù)。這對變電站之類的嚴苛環(huán)境是一個優(yōu)點,因為它提供了數(shù)字化儀和主機PC之間的完全電氣隔離。光纖還意味著PC和數(shù)字化儀之間的距離可以很長,可用于包含多個分布于大區(qū)域的測量點的大型設備。
 
Teledyne e2v – 模數(shù)轉(zhuǎn)換器:
 
位于法國的Teledyne e2v在過去的25年里一直致力于開發(fā)高速數(shù)據(jù)轉(zhuǎn)換器,并一直在高速四通道ADC技術上保持業(yè)內(nèi)領先。表3列出了2款主要的適用于UHF局部放電檢測設備的ADC。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
表3:適用于UHF局部放電系統(tǒng)的Teledyne e2v的ADC
 
EV10AQ190和EV12AQ60x分別提供高達1.25Gsps和1.6Gsps的四通道的性能。用于局部放電定位的設備可通過使用單個ADC芯片實現(xiàn)。此外,與兩個器件上的四通道相比,這種單個器件實現(xiàn)的四通道可大大減少通道間的差異,提高捕獲的局部放電之間的相關性,從而實現(xiàn)更精確的三邊測量。
 
EV12AQ60x是EV10AQ190的升級產(chǎn)品,有以下的額外的優(yōu)點:
●分辨率從10位提高到12位,從而提高測量精度
●串行接口簡化與FPGA的連接,特別是方便布線
●多器件之間的更優(yōu)秀的同步能力,適用于覆蓋整個變電站的復雜系統(tǒng)
 
此外,由于使用了Bipolar和BiCMOS工藝,這些ADC可提供非??斓纳仙?、下降和設置時間,以實現(xiàn)更精確的脈沖捕獲。圖4是EV12AQ60x的測試結(jié)果。這里輸入信號性能的影響已經(jīng)被去除,只考慮ADC本身的性能,因此表中的值表征ADC的實際性能。EV12AQ60x能支持精確測量上升/下降時間約250ps的信號。注意,這種測量沒有經(jīng)過優(yōu)化,特別是測試硬件上存在的交流耦合電容會導致上升/下降時間減少。因此,當硬件被優(yōu)化為捕捉高速脈沖時,預計會達到比下圖更好的性能。
 
對于通過使用并行數(shù)據(jù)捕獲路徑和交錯衰減設置來擴展動態(tài)范圍,擁有4個通道的芯片會非常有用。它允許提高測量信號的動態(tài)范圍,同時一個芯片上的4個通道可減少不必要的影響,如通道之間的不匹配(偏置、增益和相位)和導致反射的阻抗不匹配。這種架構(gòu)也可以擴展到多片ADC上,以進一步提高動態(tài)性能(參考文獻[H])。
 
利用UHF 局部放電檢測技術監(jiān)控電網(wǎng)的高速采集方案
圖4:EV12AQ600,脈沖測量
 
結(jié)語
 
為了應對日益增長的能源消耗,電網(wǎng)不斷地提高發(fā)電、儲電和輸電的能力。檢測這些復雜的設備對于提高電網(wǎng)的可靠性并避免破壞性中斷是至關重要的。如前所述,UHF局部放電檢測是一種可行的解決方案,并與互補的技術結(jié)合,使檢測和預防局部放電相關的故障成為可能。此外,Teledyne SP Devices和Teledyne e2v在硬件或元器件層面提供滿足高速采集系統(tǒng)要求的COTS產(chǎn)品,幫助我們的客戶設計中高性能的UHF局部放電設備。

注:參考文獻[H]:RFEL stretches the Dynamic Range of ADCs to provide ''''''''Best in Class'''''''' Product Performance, Press release published in Design & Reuse in October 2012
(來源:Teledyne e2v)
 
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱聯(lián)系小編進行侵刪。
 
 
推薦閱讀:
CITE2021看點揭秘,看看這些引領時代的科技創(chuàng)新(上)
芯象:物聯(lián)網(wǎng)通信,創(chuàng)新中國芯
深愛半導體:扎根技術開拓進取
能量監(jiān)測在直流系統(tǒng)中的作用
瑞芯微RV1126/RV1109 有效解決電池類安防產(chǎn)品痛點
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉