你的位置:首頁 > RF/微波 > 正文

RFID技術(shù)原理及其射頻天線設(shè)計

發(fā)布時間:2010-04-14

中心議題:
  • RFID技術(shù)原理
  • RFID天線類型
  • RFID射頻天線的設(shè)計
解決方案:
  • 線圈天線
  • 微帶貼片天線
  • 偶極子天線
近年來人們開始開發(fā)應(yīng)用非接觸式IC卡來逐步替代接觸式IC卡,其中射頻識別(RFID,radiofrequencyidentification)卡就是一種典型的非接觸式IC卡,然而,RFID在不同的應(yīng)用環(huán)境中需要采用不同天線通訊技術(shù)來實現(xiàn)數(shù)據(jù)交換的.
  
自1970年第一張IC卡問世起,IC卡成為當時微電子技術(shù)市場增長最快的產(chǎn)品之一,到1996年全世界發(fā)售IC卡就有7億多張.但是,這種以接觸式使用的IC卡有其自身不可避免的缺點,即接觸點對腐蝕和污染缺乏抵抗能力,大大降低了IC卡的使用壽命和使用范圍.近年來人們開始開發(fā)應(yīng)用非接觸式IC卡來逐步替代接觸式IC卡,其中射頻識別(RFID,radiofrequencyidentification)卡就是一種典型的非接觸式IC卡,

它是利用無線通信技術(shù)來實現(xiàn)系統(tǒng)與IC卡之間數(shù)據(jù)交換的,顯示出比一般接觸式IC卡使用更便利的優(yōu)點,已被廣泛應(yīng)用于制作電子標簽或身份識別卡.然而,RFID在不同的應(yīng)用環(huán)境中需要采用不同天線通訊技術(shù)來實現(xiàn)數(shù)據(jù)交換的.這里我們將首先通過介紹RFID應(yīng)用系統(tǒng)的基本工作原理來具體說明射頻天線的設(shè)計是RFID不同應(yīng)用系統(tǒng)的關(guān)鍵,然后分別介紹幾種典型的RFID天線及其設(shè)計原理,最后介紹利用AnsoftHFSS工具來設(shè)計了一種全向的RFID天線.
  
RFID技術(shù)原理
  
通常情況下,RFID的應(yīng)用系統(tǒng)主要由讀寫器和RFID卡兩部分組成的,如圖1所示.其中,讀寫器一般作為計算機終端,用來實現(xiàn)對RFID卡的數(shù)據(jù)讀寫和存儲,它是由控制單元、高頻通訊模塊和天線組成.而RFID卡則是一種無源的應(yīng)答器,主要是由一塊集成電路(IC)芯片及其外接天線組成,其中RFID芯片通常集成有射頻前端、邏輯控制、存儲器等電路,有的甚至將天線一起集成在同一芯片上.


圖1 射頻識別系統(tǒng)原理圖
  [page]
RFID應(yīng)用系統(tǒng)的基本工作原理是RFID卡進入讀寫器的射頻場后,由其天線獲得的感應(yīng)電流經(jīng)升壓電路作為芯片的電源,同時將帶信息的感應(yīng)電流通過射頻前端電路檢得數(shù)字信號送入邏輯控制電路進行信息處理;所需回復(fù)的信息則從存儲器中獲取經(jīng)由邏輯控制電路送回射頻前端電路,最后通過天線發(fā)回給讀寫器.可見,RFID卡與讀寫器實現(xiàn)數(shù)據(jù)通訊過程中起關(guān)鍵的作用是天線.一方面,無源的RFID卡芯片要啟動電路工作需要通過天線在讀寫器天線產(chǎn)生的電磁場中獲得足夠的能量;另一方面,天線決定了RFID卡與讀寫器之間的通訊信道和通訊方式.
  
目前RFID已經(jīng)得到了廣泛應(yīng)用,且有國際標準:ISO10536,ISO14443,ISO15693,ISO18000等幾種.這些標準除規(guī)定了通訊數(shù)據(jù)幀協(xié)議外,還著重對工作距離、頻率、耦合方式等與天線物理特性相關(guān)的技術(shù)規(guī)格進行了規(guī)范.RFID應(yīng)用系統(tǒng)的標準制定決定了RFID天線的選擇,下面將分別介紹已廣泛應(yīng)用的各種類型的RFID天線及其性能.

RFID天線類型
  
RFID主要有線圈型、微帶貼片型、偶極子型3種基本形式的天線.其中,小于1m的近距離應(yīng)用系統(tǒng)的RFID天線一般采用工藝簡單、成本低的線圈型天線,它們主要工作在中低頻段.而1m以上遠距離的應(yīng)用系統(tǒng)需要采用微帶貼片型或偶極子型的RFID天線,它們工作在高頻及微波頻段.這幾種類型天線的工作原理是不相同的.

線圈天線
  
當RFID的線圈天線進入讀寫器產(chǎn)生的交變磁場中,RFID天線與讀寫器天線之間的相互作用就類似于變壓器,兩者的線圈相當于變壓器的初級線圈和次級線圈.由RFID的線圈天線形成的諧振回路如圖2所示,它包括RFID天線的線圈電感L、寄生電容Cp和并聯(lián)電容C2′,其諧振頻率為:


,(式中C為Cp和C2′的并聯(lián)等效電容).RFID應(yīng)用系統(tǒng)就是通過這一頻率載波實現(xiàn)雙向數(shù)據(jù)通訊的。常用的ID1型非接觸式IC卡的外觀為一小型的塑料卡(85.72mm×54.03mm×0.76mm),天線線圈諧振工作頻率通常為13.56MHz.目前已研發(fā)出面積最小為0.4mm×0.4mm線圈天線的短距離RFID應(yīng)用系統(tǒng).

 圖2 應(yīng)答器等效電路圖
  
某些應(yīng)用要求RFID天線線圈外形很小,且需一定的工作距離,如用于動物識別的RFID.線圈外形即面積小的話,RFID與讀寫器間的天線線圈互感量M就明顯不能滿足實際使用.通常在RFID的天線線圈內(nèi)部插入具有高導(dǎo)磁率μ的鐵氧體材料,以增大互感量,從而補償線圈橫截面減小的問題.

微帶貼片天線
  
微帶貼片天線是由貼在帶有金屬地板的介質(zhì)基片上的輻射貼片導(dǎo)體所構(gòu)成的,如圖3所示.根據(jù)天線輻射特性的需要,可以設(shè)計貼片導(dǎo)體為各種形狀.通常貼片天線的輻射導(dǎo)體與金屬地板距離為幾十分之一波長,假設(shè)輻射電場沿導(dǎo)體的橫向與縱向兩個方向沒有變化,僅沿約為半波長(λg/2)的導(dǎo)體長度方向變化.則微帶貼片天線的輻射基本上是由貼片導(dǎo)體開路邊沿的邊緣場引起的,輻射方向基本確定,因此,一般適用于通訊方向變化不大的RFID應(yīng)用系統(tǒng)中.為了提高天線的性能并考慮其通訊方向性問題,人們還提出了各種不同的微帶縫隙天線,如文獻[5,6]設(shè)計了一種工作在24GHz的單縫隙天線和5.9GHz的雙縫隙天線,其輻射波為線極化波;文獻[7,8]開發(fā)了一種圓極化縫隙耦合貼片天線,它是可以采用左旋圓極化和右旋圓極化來對二進制數(shù)據(jù)中的‘1’和‘0’進行編碼.


圖3 微帶天線
[page]
偶極子天線
  
在遠距離耦合的RFID應(yīng)用系統(tǒng)中,最常用的是偶極子天線(又稱對稱振子天線).偶極子天線及其演化形式如圖4所示,其中偶極子天線由兩段同樣粗細和等長的直導(dǎo)線排成一條直線構(gòu)成,信號從中間的兩個端點饋入,在偶極子的兩臂上將產(chǎn)生一定的電流分布,這種電流分布就在天線周圍空間激發(fā)起電磁場.利用麥克斯韋方程就可以求出其輻射場方程:

式中Iz為沿振子臂分布的電流,α為相位常數(shù),r是振子中點到觀察點的距離,θ為振子軸到r的夾角,l為單個振子臂的長度.同樣,也可以得到天線的輸入阻抗、輸入回波損耗S11、阻抗帶寬和天線增益等等特性參數(shù).

 圖4 偶極子天線
  (a)偶極子天線;(b)折合振子天線;(c)變形偶極子天線
  
當單個振子臂的長度l=λ/4時(半波振子),輸入阻抗的電抗分量為零,天線輸入阻抗可視為一個純電阻.在忽略天線粗細的橫向影響下,簡單的偶極子天線設(shè)計可以取振子的長度l為λ/4的整數(shù)倍,如工作頻率為2.45GHz的半波偶極子天線,其長度約為6cm.當要求偶極子天線有較大的輸入阻抗時,可采用圖4b的折合振子.

RFID射頻天線的設(shè)計
  
從RFID技術(shù)原理和RFID天線類型介紹上看,RFID具體應(yīng)用的關(guān)鍵在于RFID天線的特點和性能.目前線圈型天線的實現(xiàn)技術(shù)很成熟,雖然都已廣泛地應(yīng)用在如身份識別、貨物標簽等RFID應(yīng)用系統(tǒng)中,但是對于那些要求頻率高、信息量大、工作距離和方向不確定的RFID應(yīng)用場合,采用線圈型天線則難以設(shè)計實現(xiàn)相應(yīng)的性能指標.同樣,如果采用微帶貼片天線的話,由于實現(xiàn)工藝較復(fù)雜,成本較高,一時還無法被低成本的RFID應(yīng)用系統(tǒng)所選擇.偶極子天線具有輻射能力較強、制造簡單和成本低等優(yōu)點,且可以設(shè)計成適用于全方向通訊的RFID應(yīng)用系統(tǒng),因此,下面我們來具體設(shè)計一個工作于2.45GHz(國際工業(yè)醫(yī)療研究自由頻段)的RFID偶極子天線.
  
半波偶極子天線模型如圖4a所示.天線采用銅材料(電導(dǎo)率:5.8e7s/m,磁導(dǎo)率:1),位于充滿空氣的立方體中心.在立方體外表面設(shè)定輻射吸收邊界.輸入信號由天線中心處饋入,也就是RFID芯片的所在位置.對于2.45GHz的工作頻率其半波長度約為61mm,設(shè)偶極子天線臂寬w為1mm,且無限薄,由于天線臂寬的影響,要求實際的半波偶極子天線長度為57mm.在AnsoftHFSS工具平臺上,采用有限元算法對該天線進行仿真,獲得的輸入回波損耗S11分布圖如圖5a所示,輻射場E面(即最大輻射方向和電場矢量所在的平面)方向圖如圖5b所示.天線輸入阻抗約為72Ω,電壓駐波比(VSWR)小于2.0時的阻抗帶寬為14.3%,天線增益為1.8.


圖5 偶極子天線
  (a)回波損耗S11;(b)輻射方向圖
  
從圖5b可以看到在天線軸方向上,天線幾乎無輻射.如果此時讀寫器處于該方向上,應(yīng)答器將不會做出任何反應(yīng).為了獲得全方位輻射的天線以克服該缺點,可以對天線做適當?shù)淖冃?如在將偶極子天線臂末端垂直方向上延長λ/4成圖4c所示.這樣天線總長度修改為(57.0mm+2×28.5mm),天線臂寬仍然為1mm.天線臂延長λ/4后,整個天線諧振于1個波長,而非原來的半個波長.這就使得天線的輸入阻抗大大地增加,仿真計算結(jié)果約為2kΩ.其輸入回波損耗S11如圖6a所示.圖6b為E面(天線平面)上的輻射場方向圖,其中實線為仿真結(jié)果,黑點為實際樣品測量數(shù)據(jù),兩者結(jié)果較為吻合說明了該設(shè)計是正確的.從圖6b可以看到在原來弱輻射的方向上得到了很大的改善,其輻射已經(jīng)近似為全方向的了.電壓駐波比(VSWR)小于2.0時的阻抗帶寬為12.2%,增益為1.4,對于大部分RFID應(yīng)用系統(tǒng),該偶極子天線可以滿足要求.


圖6 變形偶極子天線
  (a)回波損耗S11;(b)輻射方向圖

總之,RFID的實際應(yīng)用關(guān)鍵在于天線設(shè)計上,特別是對于具有非常大市場容量的商品標簽來說,要求RFID能夠?qū)崿F(xiàn)全方向的無線數(shù)據(jù)通訊,且還要價格低廉、體積小.因此,我們所設(shè)計的上述這種全向型偶極子天線的結(jié)構(gòu)簡單、易于批量加工制造,是可以滿足實際需要的.通過對設(shè)計出來實際樣品的進行參數(shù)測試,測試結(jié)果與我們的設(shè)計預(yù)期結(jié)果是一致.
要采購RFID么,點這里了解一下價格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉