測(cè)量永磁揚(yáng)聲器的阻抗曲線(xiàn)和諧振頻率
發(fā)布時(shí)間:2019-12-04 來(lái)源:Doug Mercer 和 Antoniu Miclaus 責(zé)任編輯:wenwei
【導(dǎo)讀】動(dòng)態(tài)揚(yáng)聲器的主要電氣特性是作為頻率函數(shù)的電阻抗。通過(guò)繪圖可以將其可視化,該圖稱(chēng)為阻抗曲線(xiàn)。本實(shí)驗(yàn)活動(dòng)的目的是測(cè)量永磁揚(yáng)聲器的阻抗曲線(xiàn)和諧振頻率。
目標(biāo):
本實(shí)驗(yàn)活動(dòng)的目的是測(cè)量永磁揚(yáng)聲器的阻抗曲線(xiàn)和諧振頻率。
背景:
動(dòng)態(tài)揚(yáng)聲器的主要電氣特性是作為頻率函數(shù)的電阻抗。通過(guò)繪圖可以將其可視化,該圖稱(chēng)為阻抗曲線(xiàn)。
最常見(jiàn)類(lèi)型的揚(yáng)聲器是使用連接到振膜或紙盆的音圈的機(jī)電換能器。動(dòng)圈式揚(yáng)聲器中的音圈懸掛在由永磁體提供的磁場(chǎng)中。當(dāng)電流從音頻放大器流過(guò)音圈時(shí),由線(xiàn)圈中的電流產(chǎn)生的電磁 場(chǎng)對(duì)永磁體的固定場(chǎng)作出反應(yīng)并移動(dòng)音圈和揚(yáng)聲器紙盆。交替 電流將來(lái)回移動(dòng)紙盆。這種運(yùn)動(dòng)使空氣振動(dòng)并產(chǎn)生聲音。
揚(yáng)聲器的移動(dòng)系統(tǒng)(包括紙盆、彈波、紙盆支片和音圈)具有一定的質(zhì)量和特定的順序。通常將這種情況模擬成由彈簧懸掛起來(lái)的簡(jiǎn)單質(zhì)量塊,其具有一定的諧振頻率,系統(tǒng)在該共振頻率下 具有最大的振動(dòng)自由度。
該頻率被稱(chēng)為揚(yáng)聲器的自由空間諧振,表示FS。在該頻率下,由于音圈以最大峰峰值幅度和速度振動(dòng),因此磁場(chǎng)中線(xiàn)圈運(yùn)動(dòng)產(chǎn)生的反電動(dòng)勢(shì)也處于其最大值。這會(huì)導(dǎo)致?lián)P聲器的有效電阻 抗在FS下達(dá)到最大值,稱(chēng)為ZMAX。對(duì)于剛好低于諧振頻率的頻率,當(dāng)頻率接近FS時(shí),阻抗會(huì)迅速上升并且具有電感性質(zhì)。在諧振頻率下,阻抗具有純阻性的特點(diǎn);在諧振頻率以外,隨著阻抗 下降,就會(huì)呈現(xiàn)容性的特點(diǎn)。阻抗在某個(gè)頻率處達(dá)到最小值ZMIN,在該頻率下,其行為在某些頻率范圍內(nèi)主要(但不是完全)具有阻性的特點(diǎn)。揚(yáng)聲器的額定或標(biāo)稱(chēng)阻抗ZNOM來(lái)自該ZMIN值。
在為多個(gè)驅(qū)動(dòng)器揚(yáng)聲器和用于安裝揚(yáng)聲器的物理機(jī)箱設(shè)計(jì)交叉濾 波器網(wǎng)絡(luò)時(shí),了解諧振頻率以及最小阻抗和最大阻抗至關(guān)重要。
揚(yáng)聲器阻抗模型
為了幫助您理解將要進(jìn)行的測(cè)量,圖1中顯示了一個(gè)簡(jiǎn)化的揚(yáng)聲 器電氣模型。
圖 1. 揚(yáng)聲器阻抗模型
在圖1所示電路中,一個(gè)直流電阻與由L、R和C構(gòu)成的有損并行 諧振電路串聯(lián),來(lái)模擬目標(biāo)頻率范圍內(nèi)揚(yáng)聲器的動(dòng)態(tài)阻抗。
● RDC是用直流歐姆表測(cè)量的揚(yáng)聲器直流電阻。在揚(yáng)聲器/重低音喇叭數(shù)據(jù)手冊(cè)中,該直流電阻通常稱(chēng)為DCR。直流電阻測(cè)量值通常小于驅(qū)動(dòng)器的標(biāo)稱(chēng)阻抗ZNOM. RDC通常小于揚(yáng)聲器額定阻抗,并且入門(mén)級(jí)揚(yáng)聲器發(fā)燒友可能擔(dān)心驅(qū)動(dòng)器放大器會(huì)過(guò)載。但是,由于揚(yáng)聲器的電感(L)會(huì)隨著頻率的增加而增加,因此驅(qū)動(dòng)放大器不太可能將直流電阻視為其負(fù)載。
● L是通常以毫亨(mH)為單位測(cè)量的音圈電感。通常,業(yè)界標(biāo) 準(zhǔn)是在頻率為1000 Hz時(shí)測(cè)量音圈電感。隨著頻率增加到0Hz 以上,阻抗會(huì)增加到RDC以上。這是因?yàn)橐羧腿缫粋€(gè)電感。 因此,揚(yáng)聲器的總阻抗并非恒定阻抗。如此一來(lái),我們可以將其表示為隨輸入頻率變化的動(dòng)態(tài)曲線(xiàn);我們將在進(jìn)行測(cè)量 時(shí)看到這一點(diǎn)。揚(yáng)聲器的最大阻抗ZMAX出現(xiàn)在揚(yáng)聲器的諧振頻率處。
● FS是揚(yáng)聲器的諧振頻率。揚(yáng)聲器的阻抗在FS達(dá)到最大值。諧 振頻率是指揚(yáng)聲器活動(dòng)零件的總質(zhì)量與運(yùn)動(dòng)時(shí)揚(yáng)聲器懸架的 受力達(dá)到平衡的時(shí)候。諧振頻率信息對(duì)于防止機(jī)箱鳴叫至關(guān) 重要。一般而言,影響諧振頻率的關(guān)鍵要素是活動(dòng)零件的質(zhì) 量和揚(yáng)聲器懸架的剛度。我們將通風(fēng)機(jī)箱(低音反射)調(diào)到FS,使兩者協(xié)同工作。通常,F(xiàn)S較低的揚(yáng)聲器在低頻再現(xiàn)方面優(yōu)于FS較高的揚(yáng)聲器。
● R表示驅(qū)動(dòng)器懸架損耗的機(jī)械阻力。
材料:
● ADALM1000硬件模塊
● 無(wú)焊實(shí)驗(yàn)板
● 兩個(gè)100Ω(或任何類(lèi)似值)電阻
● 來(lái)自ADALP2000套件的一個(gè)揚(yáng)聲器(如果揚(yáng)聲器的紙盆直徑大 于4英寸,則其諧振頻率相對(duì)較低)
圖 2. ADALP2000 零件套件中的小揚(yáng)聲器。
說(shuō)明:
首先構(gòu)建圖3所示電路,最好使用無(wú)焊實(shí)驗(yàn)板。揚(yáng)聲器可以放置 在機(jī)箱中或機(jī)箱外。這種配置允許我們使用通道B電壓跡線(xiàn)測(cè)量 揚(yáng)聲器兩端的電壓VL,并用負(fù)載電流IL作為通道A電流跡線(xiàn)。
圖 3. V L 和 IL 的揚(yáng)聲器測(cè)量設(shè)置。
啟動(dòng)ALICE Desktop軟件。在主 Scope(示波器)屏幕中,ALICE 軟件計(jì)算并能顯示電壓和電流波形跡線(xiàn)的均方根值。在CA Meas下拉菜單下的電壓部分中,選擇RMS,然后在電流 部分選擇RMS。在CB Meas 下拉菜單下的電壓部分中,選擇RMS。
我們可以將揚(yáng)聲器兩端的均方根電壓(通道B均方根電壓)除以通過(guò)揚(yáng)聲器的均方根電流(通道A均方根電流),從而計(jì)算出單一頻率下的揚(yáng)聲器阻抗Z。要顯示此計(jì)算,我們可以使用Channel B User(通道B用戶(hù))測(cè)量顯示。用到的兩個(gè)變量是 通道B均方根電壓SV2和通道A均方根電流SI1。單擊CB Meas下拉菜單下的User(用戶(hù))。 輸入Z 作為標(biāo)簽。輸入(SV2/SI1) ×1000作為公式。因?yàn)殡娏魇怯胢A表示的,所以,我 們需要將比率乘以1000,得到以歐姆為單位的結(jié)果。
嘗試將通道A設(shè)置為幾個(gè)不同的頻率,并查看揚(yáng)聲器上的電壓以 及計(jì)算得到的Z如何變化。
圖 4.試驗(yàn)板連接。
使用ALICE Bode Plotter的步驟:
選擇“Bode繪圖”工具。在“曲線(xiàn)”菜單中選擇“CA-dBV”, “CB-dBV”和“相位B-A”.
在Options(選項(xiàng))下拉菜單下,單擊Cut-DC”選中(若尚未選擇)。將“FFT零填充因子”更改為3。
將"Channel A Min"(通道A最小值)設(shè)為1.0 V,將最大值設(shè) 為4.0 V。將“AWG A Mode”(AWG A模式)設(shè)為 "SVMI"并將"Shape"(形狀)設(shè)為“Sine”(正弦)。將"AWG Channel B Mode"(AWG通道B模式)。設(shè)為“Hi-Z”。確保“Sync AWG”復(fù)選框已選中。
使用“Start Frequency”(開(kāi)始頻率)條目將頻率掃描設(shè)為在50 Hz開(kāi)始,并使用“Stop Frequency” (停止頻率)條目將掃描設(shè) 為在1000 Hz停止。選擇“CHA””作為要掃描的源通道。同時(shí)使用“Sweep Steps” (掃描步驟)條目將頻率步進(jìn)設(shè)為150。選擇“Single Sweep”(單掃描)。
現(xiàn)在以幅度而非dB為單位(以簡(jiǎn)化后面的數(shù)學(xué)計(jì)算)將數(shù)據(jù)導(dǎo) 出為逗號(hào)分隔格式的值文件(“File”(文件)菜單——“Save Data”(保存數(shù)據(jù)))并將其加載到電子表格程序(如Excel) 中。您將使用此文件中的50 Hz至1000 Hz通道B數(shù)據(jù)作為VL值。
注意相位處于正最大值、零點(diǎn)和負(fù)最小值時(shí)的頻率點(diǎn)。屏幕上的數(shù)據(jù)以dB為單位繪制,因此垂直刻度單位不是伏特。您的揚(yáng)聲器可能與此示例有所不同。
圖 5. 頻率掃描示例。
將數(shù)據(jù)保存為幅度,就能將信號(hào)發(fā)生器幅度(以伏特rms為單位) 保存到文件中。您可以將揚(yáng)聲器兩端的電壓VL除以電流IL,由此計(jì) 算揚(yáng)聲器阻抗Z的大小。IL是電阻兩端的電壓除以電阻得到的商。
從通道A電壓幅度值中減去通道B電壓幅度值并除以50Ω電阻,即 可計(jì)算電流幅度IL。阻抗Z為通道B電壓幅度除以電流幅度IL得到的商。
現(xiàn)在即可繪制計(jì)算得到的阻抗Z與頻率的關(guān)系曲線(xiàn)。曲線(xiàn)圖如圖 6所示。您的揚(yáng)聲器可能與此例有所不同。
圖 6. 計(jì)算所得阻抗示例圖。
揚(yáng)聲器阻抗小——約等于線(xiàn)性區(qū)域中的直流電阻——但在諧振 頻率FS處要高得多。
問(wèn)題:
根據(jù)您的測(cè)量數(shù)據(jù),為您使用的揚(yáng)聲器提取圖1所示揚(yáng)聲器電氣 模型的L、C和R。您可以使用直流歐姆表工具測(cè)量RDC。忽略L(fǎng)INPUT,因?yàn)樗啾萀較小。將這些值輸入到模型的電路仿真示意圖中,生成50Hz至1000Hz的頻率響應(yīng)掃描,并將您的模型與您在實(shí)驗(yàn)室中測(cè)量的數(shù)據(jù)進(jìn)行比較。
您可以在學(xué)子專(zhuān)區(qū)博客上找到答案。
使用ALICE阻抗分析儀測(cè)量揚(yáng)聲器阻抗的步驟:
通道B再次測(cè)量揚(yáng)聲器兩端的電壓VL 。阻抗分析儀軟件使用通道 A電壓與通道B電壓的差值以及通道之間的相對(duì)相位,基于R1 和R組合的值計(jì)算阻抗。
圖 7.揚(yáng)聲器阻抗測(cè)量設(shè)置
打開(kāi)ALICE阻抗分析儀軟件工具。
使Ext Res = 50, 將“Channel A Freq”(通常A頻率)設(shè)為遠(yuǎn)低于 揚(yáng)聲器諧振頻率的值。在這個(gè)作為第一次測(cè)量的示例中,所用 頻率為100Hz。將“Ohms/div””設(shè)為10。從圖8可以看出,相位角應(yīng)該是正值。揚(yáng)聲器的串聯(lián)電阻約為7Ω,電抗具有感性性質(zhì)。
圖 8. 頻率低于諧振頻率時(shí)的阻抗測(cè)量。
現(xiàn)在將頻率設(shè)為從頻率掃描得到的諧振值。您可能需要精確調(diào) 整該值,找到電抗為零的確切點(diǎn),如圖9所示。
圖 9. 諧振頻率下的阻抗測(cè)量。
該結(jié)果應(yīng)與頻率掃描的結(jié)果一致。相位角應(yīng)該很小,串聯(lián)電阻 現(xiàn)在大約是15Ω。
現(xiàn)在將頻率設(shè)為高于諧振頻率的點(diǎn),其中,相位接近其負(fù)峰值, 如圖10所示。這里使用的是500 Hz。
圖 10. 頻率高于諧振頻率時(shí)的阻抗測(cè)量。
從數(shù)據(jù)可以看出,相位角應(yīng)該是負(fù)值。揚(yáng)聲器的串聯(lián)電阻仍然 約為7Ω,但電抗具有容性性質(zhì)。
注釋?zhuān)?/div>
與所有ALM實(shí)驗(yàn)室一樣,我們?cè)谝鯝DALM1000連接器的連接和配置硬件時(shí),會(huì)使用以下術(shù)語(yǔ)。綠色陰影矩形表示接入ADALM1000模擬I/O連接器的連接。模擬I/O通道引腳稱(chēng)為CA和CB。當(dāng)硬件配置為驅(qū)動(dòng)電壓/測(cè)量電流時(shí),添加-V,例如CA-V;當(dāng)硬件配置為驅(qū)動(dòng)電流/測(cè)量電壓時(shí),添加-I,例如CA-I。當(dāng)通道配置為高阻態(tài)模式以?xún)H測(cè)量電壓時(shí),添加-H,例如CA-H。
類(lèi)似地,示波器跡線(xiàn)也是通過(guò)通道和電壓/電流表示的,例如, 用CA-V、CB-V表示電壓波形,用CA-I、CB-I表示電流波形。
推薦閱讀:
特別推薦
- 學(xué)子專(zhuān)區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來(lái)提高工業(yè)功能安全合規(guī)性?
- 如何通過(guò)配置控制器優(yōu)化CAN總線(xiàn)系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車(chē)Zonal架構(gòu)的電子書(shū)
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車(chē)“芯”動(dòng)力:盡在2025廣州國(guó)際新能源汽車(chē)功率半導(dǎo)體技術(shù)展
- 不容錯(cuò)過(guò)的汽車(chē)電子盛會(huì)︱AUTO TECH China 2025第十二屆廣州國(guó)際汽車(chē)電子技術(shù)博覽會(huì)
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開(kāi)發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池
友情鏈接(QQ:317243736)
我愛(ài)方案網(wǎng) ICGOO元器件商城 創(chuàng)芯在線(xiàn)檢測(cè) 芯片查詢(xún) 天天IC網(wǎng) 電子產(chǎn)品世界 無(wú)線(xiàn)通信模塊 控制工程網(wǎng) 電子開(kāi)發(fā)網(wǎng) 電子技術(shù)應(yīng)用 與非網(wǎng) 世紀(jì)電源網(wǎng) 21ic電子技術(shù)資料下載 電源網(wǎng) 電子發(fā)燒友網(wǎng) 中電網(wǎng) 中國(guó)工業(yè)電器網(wǎng) 連接器 礦山設(shè)備網(wǎng) 工博士 智慧農(nóng)業(yè) 工業(yè)路由器 天工網(wǎng) 乾坤芯 電子元器件采購(gòu)網(wǎng) 亞馬遜KOL 聚合物鋰電池 工業(yè)自動(dòng)化設(shè)備 企業(yè)查詢(xún) 工業(yè)路由器 元器件商城 連接器 USB中文網(wǎng) 今日招標(biāo)網(wǎng) 塑料機(jī)械網(wǎng) 農(nóng)業(yè)機(jī)械 中國(guó)IT產(chǎn)經(jīng)新聞網(wǎng) 高低溫試驗(yàn)箱
?
關(guān)閉
?
關(guān)閉