如何計算控制器參數(shù)使隔離式CAN網(wǎng)絡(luò)以1 Mbps的速度運行
發(fā)布時間:2020-07-17 來源:Hein Marais 責(zé)任編輯:wenwei
【導(dǎo)讀】CAN 是一種差分信號標(biāo)準(zhǔn),廣泛用于汽車、工業(yè)和儀器儀表行業(yè)。它用于不同系統(tǒng)之間的串行通信,這些系統(tǒng)常常是經(jīng)長距離連接到不同的電源系統(tǒng)。由于環(huán)境限制,常常使用電流隔離來中斷接地環(huán)路或提供物理安全性。
隔離式CAN網(wǎng)絡(luò)的傳播延遲比非隔離式CAN網(wǎng)絡(luò)要長,設(shè)計起來可能頗具挑戰(zhàn)性。圖1顯示一個使用信號和電源隔離CAN收發(fā)器ADM3053 的隔離式 CAN 節(jié)點,我們將以它為例來計算所需的 CAN控制器參數(shù),以便在 20 米電纜上以 1 Mbps 的速度進行通信。
圖 1. 使用信號和電源隔離 CAN 收發(fā)器 ADM3053 的隔離式 CAN 節(jié)點
一個CAN比特由四個獨立的時間段組成 :同步段 (SYNC_SEG)、傳播段 (PROP_SEG)、相位段1(PHASE_SEG1) 和相位段 2(PHASE_SEG2)。這些時間段可以在 CAN 控制器中進行編程,對于計算 CAN 控制器的設(shè)置參數(shù)至關(guān)重要。圖 2 所示為標(biāo)稱比特時間的不同時間段。
計算中使用如下假設(shè)條件 :
• 電纜長度為 20 m
• 數(shù)據(jù)速率或比特率為1 Mbps
• 電纜傳播延遲為 5 ns/m
• CAN 控制器振蕩器頻率為36 MHz
圖 2. CAN 標(biāo)稱比特時間
CAN 采用逐位仲裁方式,不同的節(jié)點可以爭奪總線訪問權(quán),這就導(dǎo)致多個節(jié)點可以同時傳輸數(shù)據(jù)。傳輸節(jié)點必須對總線上的數(shù)據(jù)進行采樣,以便確定它是否贏得仲裁。由于系統(tǒng)的傳播延遲,控制器必須補償各位采樣的時間。在控制器中設(shè)置 PROP_SEG 可以提供此補償,其計算方法如下 :
對于 ADM3053,從 TxD 到 RxD 的傳播延遲為 250 ns(最大值)。
電纜的物理延遲等于 5 ns/m 乘以電纜長度 20 m,結(jié)果為 100 ns。
因此,通過系統(tǒng)并返回的總傳播時間為 :2 x ( 傳播延遲 + 收發(fā)器傳播延遲 ) = 700 ns (2 × (100 + 250) = 700 ns)。
為了給控制器編程,必須將寄存器設(shè)置為“時間量子”的整數(shù)倍。時間量子的時長等于 CAN 系統(tǒng)時鐘的時間周期,本例中為 28 ns。
對于 28 ns 的時間量子,每位包括 36 (1000/28 = 36) 個時間量子。
PROP_SEG = ROUND_UP (700 ns/28 ns) = 25 個時間量子
從每位的 36 個時間量子中,減去用于 PROP_SEG 的 25個時間量子和用于 SYNC_SEG 的 1 個時間量子,余下的時間量子分配給 PHASE_SEG1 和 PHASE_SEG2,每段5 個。
CAN 系統(tǒng)時鐘存在容差,因而會出現(xiàn)累積相位誤差。這要求系統(tǒng)通過再同步跳躍 (RJW) 同步,RJW 為 4 和PHASE_SEG1 二者中的較小值。
由此便可計算系統(tǒng)的振蕩器容差要求 :
?f < RJW/(20 × NBT) = 4/(20 × 36) = 0.006
?f < Minimum (PHASE_SEG1 and PHASE_SEG2)/2(13 × NBT –PHASE_SEG2) = 5/2(13 × 36 – 5) = 0.005
這兩個值中的較小者就是所需的振蕩器容差 0.5%。
計算得出下列設(shè)置參數(shù) :
• SYNC_SEG = 1
• PROP_SEG = 25
• PHASE_SEG1 = 5
• PHASE_SEG2 = 5
• RJW = 4
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實驗:多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動機器人設(shè)計指南,看完秒懂
技術(shù)文章更多>>
- 第14講:工業(yè)用NX封裝全SiC功率模塊
- 意法半導(dǎo)體榮膺 2025 年全球杰出雇主認證
- IGBT并聯(lián)設(shè)計指南,拿下!
- 功率器件熱設(shè)計基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- 加速度傳感器不好選型?看這6個重要參數(shù)!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍牙
藍牙4.0
藍牙模塊
浪涌保護器
雷度電子
鋰電池
利爾達
連接器
流量單位
漏電保護器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢想電子
模擬鎖相環(huán)
耐壓測試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池