直流/直流轉(zhuǎn)換器數(shù)據(jù)表——系統(tǒng)效率揭秘
發(fā)布時(shí)間:2021-01-14 責(zé)任編輯:wenwei
【導(dǎo)讀】市面上售有各種類型的穩(wěn)壓器,但很難選擇一款直流/直流穩(wěn)壓器。大多數(shù)汽車應(yīng)用都要求在整個(gè)負(fù)載范圍內(nèi)保持高效率,因?yàn)樗鼈円恢痹诤碾姟5捰终f(shuō)回來(lái),許多工業(yè)應(yīng)用在高負(fù)載時(shí)需要高效率,而在輕負(fù)載時(shí),效率并不是很重要。因此必須了解直流/直流穩(wěn)壓器中的損耗。閱讀直流/直流轉(zhuǎn)換器數(shù)據(jù)表中提供的效率曲線時(shí)也萌生了一些問(wèn)題,比如“為什么在輕負(fù)載時(shí)功率較低呢?”“為什么在重負(fù)載時(shí)功率會(huì)下降呢?”在該系列博客中,我會(huì)以SWITCHER® LM2673 3A降壓穩(wěn)壓器為例,嘗試將系統(tǒng)效率解析成不同的組件損耗。
圖1所示為評(píng)估模塊(EVM)示意圖。
圖1:設(shè)計(jì)原理圖
柵極電荷和IC損耗
在諸如LM2673的典型非同步降壓穩(wěn)壓器中,功耗部件包括集成電路、電感器和箝位二極管。穿過(guò)輸入和輸出電容和寄生等效串聯(lián)電阻(ESR)的均方根(RMS)電流非常低;因此,你可以忽略這些組件的損耗。
由于結(jié)構(gòu)關(guān)系,每個(gè)MOSFET在其端子之間都有一些寄生電容。它們是柵漏電容(CGD)、源極電容(CGS)和漏電容(CDS),如圖1所示。電容值視MOSFET尺寸、裝配和其它工藝參數(shù)而有所不同。理想的MOSFET過(guò)渡時(shí)間為零,與此不同的是,這些寄生電容具有有限的開(kāi)關(guān)時(shí)間,如圖2所示。
圖2:MOSFET的寄生電容
如圖3所示,有限的開(kāi)關(guān)時(shí)間是輸入電容(CISS)充放電的結(jié)果。輸入電容基本上是CGS和密勒電容(CGD)相加所得。柵極電荷(QG)是源極電荷(QGS)和柵漏電荷(QGD)相加所得。MOSFET的柵極電荷是需要完全開(kāi)啟MOSFET的電荷。
圖3:柵極電荷和密勒平臺(tái)
MOSFET驅(qū)動(dòng)器提供電流(ICC),您可以使用公式1進(jìn)行估算:
其中,F(xiàn)SW是指直流/直流穩(wěn)壓器的開(kāi)關(guān)頻率。
對(duì)于像LM2673一樣具有集成高側(cè)MOSFET的轉(zhuǎn)換器來(lái)講,數(shù)據(jù)表中并未列出QG等參數(shù)。因此,你需要在實(shí)驗(yàn)臺(tái)上以不同的方式估算ICC。啟動(dòng)設(shè)備后,斷開(kāi)負(fù)載,測(cè)量輸入電流。在未連接載荷的情況下,該輸入電流測(cè)量基本上測(cè)量ICC電流。ICC電流也稱為工作靜態(tài)電流。請(qǐng)參考“其他資源”部分中的鏈接,了解更多信息。
為了更準(zhǔn)確地計(jì)算,可以使用德州儀器的WEBENCH® Power Designer軟件。WEBENCH Power Designer具有所有內(nèi)部MOSFET參數(shù)的信息,因此在計(jì)算損耗時(shí)可將這些考慮在內(nèi)。
如等式1所示,電流直接與開(kāi)關(guān)頻率(FSW)成正比。由于MOSFET驅(qū)動(dòng)器在提供該電流,驅(qū)動(dòng)器中會(huì)有損耗。驅(qū)動(dòng)電壓(VCC)由內(nèi)部低壓差穩(wěn)壓器(LDO)設(shè)置。驅(qū)動(dòng)器中的損耗以等式2表示:
因?yàn)橹绷?直流穩(wěn)壓器內(nèi)的LDO提供該電流,在LDO中也會(huì)有功耗。此功耗通過(guò)等式3表示:
如果將等式2和等式3相加,可以得出LDO和驅(qū)動(dòng)器(等式4)的總功耗:
因此,輸入電壓越高,損耗也會(huì)增加。此外,柵極電荷直接影響開(kāi)關(guān)損耗。如果內(nèi)部MOSFET具有較大的寄生電容,那么所得的柵極電荷將會(huì)更大;在開(kāi)關(guān)轉(zhuǎn)換所花費(fèi)的時(shí)間也將會(huì)更長(zhǎng)。因此會(huì)增加開(kāi)關(guān)損耗。
在本系列的下一篇文章中,我將解釋柵極電荷如何與MOSFET的開(kāi)關(guān)損耗相關(guān);輕負(fù)載效率如何依賴于這些損耗;以及總損耗如何影響直流/直流穩(wěn)壓器的傳導(dǎo)損耗和整體效率。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 智能無(wú)處不在:安謀科技“周易”NPU開(kāi)啟端側(cè)AI新時(shí)代
- 從富士通到RAMXEED,以全新一代FeRAM迎接邊緣智能高可靠性無(wú)延遲數(shù)據(jù)存儲(chǔ)需求
- 艾邁斯歐司朗舉辦中國(guó)發(fā)展中心圓桌論壇:貼近本土客戶需求 引領(lǐng)智能時(shí)代新航向
- 貿(mào)澤開(kāi)售Texas Instruments DLP5532PROJHBQ1EVM評(píng)估模塊
- 艾邁斯歐司朗發(fā)布紅外LED新品,搭載全新IR:6技術(shù),助力提升安防與生物識(shí)別應(yīng)用效率
- 英飛凌推出業(yè)界首款20 Gbps通用USB外設(shè)控制器
- Melexis發(fā)布突破性Arcminaxis?位置感應(yīng)技術(shù)及產(chǎn)品,專為機(jī)器人關(guān)節(jié)打造
技術(shù)文章更多>>
- 開(kāi)幕倒計(jì)時(shí)8天,第104屆中國(guó)電子展人氣展品提前看!
- 實(shí)力認(rèn)證!大聯(lián)大連續(xù)二十四年蟬聯(lián)“優(yōu)秀國(guó)際品牌分銷商”獎(jiǎng)
- 車載充電器材料選擇比較:碳化硅與IGBT
- 一文解讀48V-12V DC-DC 轉(zhuǎn)換器核心技術(shù)
- 功率器件熱設(shè)計(jì)基礎(chǔ)(一)——功率半導(dǎo)體的熱阻
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索