5G AAU 功放控制和監(jiān)測(cè)模塊簡(jiǎn)析
發(fā)布時(shí)間:2021-07-03 來(lái)源:Joyce Li 責(zé)任編輯:wenwei
【導(dǎo)讀】第五代移動(dòng)通信技術(shù)(即5th generation mobile networks或5th generation wireless systems、5th-Generation,簡(jiǎn)稱5G或5G技術(shù))是最新一代蜂窩移動(dòng)通信技術(shù),也是繼4G(LTE、WiMax)、3G(UMTS、WCDMA)和2G(GSM)系統(tǒng)之后的延伸。相比于4G技術(shù),5G 有三大突出優(yōu)勢(shì):
1. eMBB Enhanced Mobile Broadband,即增強(qiáng)型移動(dòng)寬帶,比4G具有更高的上傳、下載速率,可以進(jìn)一步滿足用戶對(duì)于極致網(wǎng)速的要求。2. uRLLC Ultra-Reliable Low latency, 即超可靠低時(shí)延通信,在此場(chǎng)景下,連接時(shí)延要達(dá)到1ms級(jí)別,而且要支持高速移動(dòng)(500km/h)情況下的高可靠性連接。這一場(chǎng)景更多面向車聯(lián)網(wǎng)、無(wú)人駕駛、工業(yè)控制、遠(yuǎn)程醫(yī)療等特殊應(yīng)用。3. mMTC ,massive Machine Type Communications,即海量機(jī)器類通信,支持海量終端互聯(lián),實(shí)現(xiàn)大規(guī)模物聯(lián)網(wǎng)業(yè)務(wù),可以快速促進(jìn)各垂直行業(yè)(智慧城市、智能家居、環(huán)境監(jiān)測(cè)等)的深度融合。
實(shí)現(xiàn)以上5G特點(diǎn),最重要的技術(shù)變革就是5G采用了massive MIMO技術(shù),即多天線大規(guī)模多輸入輸出。其實(shí),MIMO技術(shù)在通信上應(yīng)用不是新鮮事,但5G采用了massive MIMO技術(shù),它是MIMO的擴(kuò)展,它通過在基站上增加大量天線來(lái)擴(kuò)展到傳統(tǒng)系統(tǒng)。數(shù)量眾多的天線有助于集中能量,從而極大地提高了吞吐量和效率。隨著天線數(shù)量的增加,網(wǎng)絡(luò)和移動(dòng)設(shè)備都實(shí)現(xiàn)了更復(fù)雜的設(shè)計(jì)來(lái)協(xié)調(diào)MIMO操作。Massive MIMO利用了三個(gè)關(guān)鍵概念,即空間分集、空間復(fù)用和波束成形?;谝陨?,5G Massive MIMO基站最大特點(diǎn)是采用64TR或者32TR天線系統(tǒng),并且將RRU和天線整合在一起,天線不再像4G時(shí)代拉遠(yuǎn)放置。本文將簡(jiǎn)要闡述在5G Massive MIMO系統(tǒng)下的功放控制以及檢測(cè)模塊系統(tǒng)的簡(jiǎn)要分析,并提出TI的全套解決方案。
5G 功放系統(tǒng)是TX的重要組成部分,起到功率發(fā)射、基站覆蓋的功能,尤其是在64TR 32TR系統(tǒng)里,功放數(shù)量大幅上升,功放的效率以及散熱會(huì)在整個(gè)AAU系統(tǒng)中都是耗能的大頭。所以功放監(jiān)控電路設(shè)計(jì)可以起到高效控制PA、降低電路面積、降低耗能的目的。
目前5G主流的功放有LDMOS PA以及 GaN PA。LDMOS PA作為一種是采用硅工藝的LDMOS(Laterally-Diffused Metal-Oxide Semiconductor,橫向擴(kuò)散MOS)技術(shù),技術(shù)成熟,稍顯陳舊,成本低;GaN PA是基于三五族工藝的氮化鎵(GaN)技術(shù),GaN的主要優(yōu)點(diǎn)是其較高的功率密度,具有高擊穿電壓,高電流密度,高過渡頻率,低導(dǎo)通電阻和低寄生電容。這些特性可轉(zhuǎn)化為高輸出功率、寬帶寬和高效率。GaN在3.5GHz及以上頻率下表現(xiàn)良好,而LDMOS在高頻下受到挑戰(zhàn)。GaN技術(shù)性能比LDMOS更好,非常適合5G高頻應(yīng)用的需求,不過價(jià)格相對(duì)更貴。GaN的供電電壓需要更高的電平,柵壓電平需要負(fù)壓;LDMOS PA的柵壓需要正壓供電。圖1是兩種PA簡(jiǎn)化的工作原理。通過調(diào)節(jié)柵壓電平可以起到控制PA功率輸出的目的。
圖1:GaN 和LDMOS PA的簡(jiǎn)化工作原理
一般來(lái)說,5G AAU系統(tǒng)一個(gè)TX通道的額定發(fā)射功率在5W~10W量級(jí),5G功放系統(tǒng)一般采用多級(jí)功放級(jí)聯(lián)的形式,來(lái)實(shí)現(xiàn)大功率輸出的目的。第二級(jí)通常為Doherty架構(gòu),圖2為傳統(tǒng)對(duì)稱Doherty功率放大器電路示意圖。Doherty功率放大器主要由4個(gè)部分組成:功分器、主放大器(carrier PA)、輔助放大器(Peak PA)和信號(hào)合路。其中,功分器用于將信號(hào)分別輸入到主放大器與輔助放大器中;主放大器工作在AB類工作狀態(tài),輸出端接1/4波長(zhǎng)傳輸線;輔助放大器工作在C類工作狀態(tài),輸入端接1/4波長(zhǎng)傳輸線;信號(hào)合路部分用于將主放大器與輔助放大器放大的信號(hào)融合。對(duì)于傳統(tǒng)的對(duì)稱Doherty功率放大器,功分器功率分配比為1:1,并且主放大器與輔助放大器選用相同的晶體管。
圖2 Doherty PA架構(gòu)示意圖
功放柵壓控制DAC
控制PA柵壓的DAC器件是5G功放監(jiān)控系統(tǒng)的核心器件,由于5G AAU系統(tǒng)中天線數(shù)量較4G時(shí)代增加不少,對(duì)于DAC通道數(shù)的集成度就有了很高的要求。對(duì)于以上介紹的1級(jí)PA+ Doherty PA架構(gòu),每通道需要3個(gè)DAC供PA的柵壓。對(duì)于64TR AAU系統(tǒng),則總共需要64*3=192個(gè)通道的DAC。AMC7932是TI新 推出的高集成32通道12bitDAC,其內(nèi)部還集成12bit SAR型 250KSPS ADC以及片上溫度傳感器。
相較于上一代AMC7836,DAC的數(shù)量從16通道升級(jí)到32通道,對(duì)于AAU場(chǎng)景,DAC芯片數(shù)量可以降低。其中32通道DAC,分為2個(gè)group,每個(gè)group都可以支持正負(fù)壓供電。每個(gè)group供電范圍以及DAC的輸出范圍可以支持–10 V to 0 V, –5 V to 0 V, 0 V to 5 V, 以及 0 V to 10V。可以支持LDMOS以及GaN PA方案。其中集成的ADC可以用來(lái)轉(zhuǎn)換放置在PA附近的模擬溫度傳感器。功放的功率也隨著溫度改變而改變,所以功放的測(cè)溫需求也是功放監(jiān)控模塊的必備功能。用戶一般會(huì)在FPGA里存儲(chǔ)功放功率、溫度和對(duì)應(yīng)的DAC柵壓電壓的查找表,便于系統(tǒng)快速配置功放功率。圖3是AMC7932的常用原理圖,對(duì)接的為L(zhǎng)DMOS類型的PA。
圖3. AMC7932 原理圖
功放溫度/電流檢測(cè)
功放溫度檢測(cè)目的是一是為了檢測(cè)功放是否在正常工作,是否有過熱等異常發(fā)生;二是檢測(cè)當(dāng)前功放的溫度,如果系統(tǒng)調(diào)整柵壓,需要根據(jù)溫度查找表找出需要配置DAC的柵壓數(shù)值。溫度傳感器的選擇可以選取模擬電壓輸出類別的溫度傳感器或者數(shù)字接口傳感器,模擬輸出的傳感器可以輸入給AMC7932的ADC進(jìn)行轉(zhuǎn)換,再通過SPI傳給FPGA等器件,所以可以節(jié)省一個(gè)數(shù)字通信接口器件,便于系統(tǒng)精簡(jiǎn)。TMP235是TI推出的高性能/低成本的模擬溫度傳感器,可以實(shí)現(xiàn)typical+/- 0.5C, maximum +/-2.5C -40C~150C溫度范圍。TMP235放置在PA附近,可以多個(gè)PA共用一顆溫度傳感器。
功放電流檢測(cè)是用來(lái)檢測(cè)功放消耗的電流,檢測(cè)功放的健康狀態(tài),是否有過流等異常現(xiàn)象發(fā)生。電流檢測(cè)一般測(cè)試Ids的電流,也可以同時(shí)檢測(cè)多路功放供電。INA281系列是TI推出的一顆高性能/低成本的電流傳感器,具有超高的共模電壓范圍,支持-4V~110V共模電壓范圍,對(duì)于GaN 以及LDMOS 管的供電范圍都能支持,并且有很大裕量。電流檢測(cè)的原理是檢測(cè)串聯(lián)在功放供電電路上的Shunt電阻上的壓降,再經(jīng)過內(nèi)部放大電路,放大輸出給AMC7932的ADC,如圖4所示。INA281的內(nèi)部放大器的放大倍數(shù)有多種檔位,從20V/V到500V/V都有不同的型號(hào),用戶可以按照系統(tǒng)測(cè)試電流的范圍進(jìn)行選擇。需要強(qiáng)調(diào)的是,INA281的內(nèi)部偏移電壓offset voltage(Vos)以及Gain error都非常低,Vos 在+/-55uV級(jí)別,gain error在+/-0.5%,可以滿足用戶精準(zhǔn)的電流測(cè)試需求,并且溫漂性能也在很低的數(shù)量級(jí),Vos 溫漂性能在+/-0.1uV/C. Gain drift在+/-20ppm/C。
圖4. INA281工作原理圖
AAU TDD制式下的節(jié)能功能
AAU系統(tǒng)由于MIMO的架構(gòu),器件數(shù)量、功放數(shù)量、天線數(shù)量都有很大的提升,所以AAU整機(jī)功耗也比4G RRU有明顯提高了,降功耗就是AAU的重要目標(biāo)。而功放功耗占AAU功耗的大頭,功放降功耗也是重要目標(biāo)。通常功放降功耗可以通過選取高效率的GaN功放、DPD(數(shù)字預(yù)失真)算法等。此外還可以借助TDD系統(tǒng)的優(yōu)勢(shì),在上行時(shí)隙時(shí)關(guān)斷PA的柵壓,下行時(shí)隙時(shí)打開PA的柵壓,可以節(jié)省PA的功耗。具體實(shí)現(xiàn)方式是在柵壓控制DAC AMC7932輸出到PA柵壓間加上以及開關(guān)器件,通過FPGA控制開關(guān)器件的打開關(guān)斷,實(shí)現(xiàn)TDD下PA的工作以及關(guān)斷。TMUX4157N就是TI推出的一顆負(fù)壓開關(guān),可以用于GaN功放系統(tǒng),工作電壓支持-4V~-12V,Ron電阻1.8ohm, 支持超高的工作范圍-55C~125C,圖5是其工作的示意圖。對(duì)于LDMOS PA,需要選取支持正壓供電的開關(guān),TMUX1247就是不錯(cuò)的選擇。
圖5. 負(fù)壓開關(guān)TMUX4157N工作示意圖
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- TCL實(shí)業(yè)攬獲多項(xiàng)CES 2025科技大獎(jiǎng),蟬聯(lián)全球消費(fèi)電子品牌TOP10
- 利用高性能電壓監(jiān)控器提高工業(yè)功能安全合規(guī)性——第1部分
- 芯耀輝:從傳統(tǒng)IP到IP2.0,AI時(shí)代國(guó)產(chǎn)IP機(jī)遇與挑戰(zhàn)齊飛
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開關(guān)浪涌抑制器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器