你的位置:首頁(yè) > 互連技術(shù) > 正文

如何測(cè)量隨偏壓變化的MLCC電容?

發(fā)布時(shí)間:2020-04-23 責(zé)任編輯:lina

【導(dǎo)讀】設(shè)計(jì)人員往往忽略高容量、多層陶瓷電容(MLCC)隨其直流電壓變化的特性。所有高介電常數(shù)或II類電容(B/X5R R/X7R和F/Y5V特性)都存在這種現(xiàn)象。然而,不同類型的MLCC變化量區(qū)別很大。
 
設(shè)計(jì)人員往往忽略高容量、多層陶瓷電容(MLCC)隨其直流電壓變化的特性。所有高介電常數(shù)或II類電容(B/X5R R/X7R和F/Y5V特性)都存在這種現(xiàn)象。然而,不同類型的MLCC變化量區(qū)別很大。Mark Fortunato曾經(jīng)寫(xiě)過(guò)一篇關(guān)于該主題的文章,給出的結(jié)論是:您應(yīng)該核對(duì)電容的數(shù)據(jù)資料,確認(rèn)電容值隨偏壓的變化。但如果數(shù)據(jù)資料中未提供這一信息又該如何呢?您如何確定電容在具體應(yīng)用條件下變小了多少?
 
對(duì)電容與偏壓關(guān)系進(jìn)行特征分析的理論
 
圖1所示為一種測(cè)量直流偏壓特性的電路。該電路的核心是運(yùn)算放大器U1(MAX4130)。運(yùn)放作為比較器使用,反饋電阻R2和R3增加滯回。D1將偏置設(shè)置在高于GND,所以不需要負(fù)電源電壓。C1和R1從反饋網(wǎng)絡(luò)連接至輸入負(fù)端,使電路作為RC振蕩器工作。電容C1為被測(cè)對(duì)象(DUT),作為RC振蕩器中的C;電位計(jì)R1為RC振蕩器中的R。

如何測(cè)量隨偏壓變化的MLCC電容?
圖1:對(duì)電容與偏壓關(guān)系進(jìn)行特征分析的電路。
 
運(yùn)放輸出引腳的電壓波形Vy以及R、C之間連接點(diǎn)的電壓Vx如圖2所示。當(dāng)運(yùn)放輸出為5V時(shí),通過(guò)R1對(duì)C1進(jìn)行充電,直到電壓達(dá)到上限,強(qiáng)制輸出為0V;此時(shí),電容放電,直到Vx達(dá)到下限,從而強(qiáng)制輸出恢復(fù)為5V。該過(guò)程反復(fù)發(fā)生,形成穩(wěn)定振蕩。
 
如何測(cè)量隨偏壓變化的MLCC電容?
圖2. VX和VY的振蕩電壓。
 
振蕩周期取決于R、C,以及上門(mén)限VUP和下門(mén)限VLO:
 
如何測(cè)量隨偏壓變化的MLCC電容?
 
由于5V、VUP和VLO固定不變,所以T1、T2與RC成比例(通常稱為RC時(shí)間常數(shù))。比較器門(mén)限是Vy、R2、R3及D1正向偏壓(Vsub>Diode)的函數(shù):
 
如何測(cè)量隨偏壓變化的MLCC電容?
 
式中,VUP為Vy= 5V時(shí)的門(mén)限,VLO為Vy = 0V時(shí)的門(mén)限。給定參數(shù)后,這些門(mén)限的結(jié)果大約為:VLO為0.55V,VUP為1.00V。
 
Q1和Q2周圍的電路將周期時(shí)間轉(zhuǎn)換為比例電壓。工作原理如下。MOSFET Q1由U1的輸出控制。T1期間,Q1導(dǎo)通,將C3電壓箝位至GND;T2期間,Q1關(guān)斷,允許恒定電流源(Q2、R5、R6和R7)對(duì)C3進(jìn)行線性充電。隨著T2增大,C3電壓升高。圖3所示為三個(gè)周期的C3電壓。
 
C3電壓(VC3)平均值等于:
 
由于I、C3、α和β均為常數(shù),所以C3的平均電壓與T2成比例,因此也與C1成比例。
 
低通濾波器R8/C4對(duì)信號(hào)進(jìn)行濾波,低失調(diào)運(yùn)放U2 (MAX9620)對(duì)輸出進(jìn)行緩沖,所以,允許使用任何電壓表進(jìn)行測(cè)量。測(cè)量之前,該電路需要進(jìn)行簡(jiǎn)單校準(zhǔn)。首先將DUT安裝到電路,將VBIAS設(shè)定為0.78V (VLO和VUP的平均值),所以DUT上的實(shí)際平均(DC)電壓為0V。調(diào)節(jié)電位計(jì)R1時(shí),輸出電壓隨之變化。調(diào)節(jié)R1,直到輸出電壓讀數(shù)為1.00V。在這種條件下,C3的峰值電壓為大約2.35V??筛钠秒妷?,輸出電壓將顯示電容值的變化百分比。例如,如果輸出電壓為0.80V,在特定偏置電壓下的電容值將為偏置為0V時(shí)的80%。
 
在一塊小PCB上搭建圖1電路。首先使用一個(gè)10μF電容進(jìn)行測(cè)量。圖4和圖5分別顯示了0V和5V偏壓條件下的信號(hào)。
 
如何測(cè)量隨偏壓變化的MLCC電容?
圖4:VBIAS = 0V時(shí)的測(cè)量結(jié)果,Ch1 = Vx;Ch2 = Vy;Ch3 = VC3。調(diào)節(jié)R1,使電壓表讀數(shù)為1.000V。
 
如何測(cè)量隨偏壓變化的MLCC電容?
圖5. VBIAS = 5V時(shí)的測(cè)量結(jié)果。由于電容值減小,振蕩周期已經(jīng)明顯縮短。Ch1 = Vx;Ch2 = Vy;Ch3 = VC3。電壓表讀數(shù)為0.671V。
 
0V偏壓時(shí),調(diào)節(jié)電位計(jì)R1,使電壓表讀數(shù)為1.000V。5V偏壓時(shí),電壓表讀數(shù)為0.671V,說(shuō)明電容值為原來(lái)的67.1%。利用高精度計(jì)數(shù)器,也測(cè)得總周期T。0V偏壓下的T為4933?s,5V偏壓下為0V,說(shuō)明電容值為原來(lái)的66.5% (即3278μs/4933μs)。這些值非常一致,證明電路設(shè)計(jì)可高精度測(cè)量電容值隨偏壓的變化關(guān)系。
 
現(xiàn)在執(zhí)行第二項(xiàng)測(cè)量,從Murata提供的樣本中抽取2.2μF/16V電容(型號(hào)為GRM188R61C225KE15)。本次測(cè)量中,在0V至16V整個(gè)工作范圍內(nèi)記錄電容值。通過(guò)測(cè)量電路的輸出電壓和實(shí)際振蕩周期,確定相對(duì)電容。此外,從Murata Simsurfing工具采集數(shù)據(jù);該工具可根據(jù)Murata的測(cè)量值提供具體器件的直流偏置特性。結(jié)果如圖6所示。兩條測(cè)量數(shù)據(jù)曲線所示的結(jié)果幾乎完全相同,證明時(shí)間-電壓轉(zhuǎn)換電路在較大動(dòng)態(tài)范圍內(nèi)工作良好。Simsurfing工具得到的數(shù)據(jù)與我們的測(cè)量結(jié)果之間存在一定差異,但曲線的形狀相似。
 
 
如何測(cè)量隨偏壓變化的MLCC電容?
圖6:2.2μF/16V MLCC的相對(duì)電容與偏置電壓的關(guān)系曲線。電容值被標(biāo)準(zhǔn)化至0V偏壓下的電容值。藍(lán)色曲線基于電路輸出電壓的測(cè)量值;紅色曲線基于振蕩周期測(cè)量值;綠色曲線基于Murata Simsurfing工具提供的特征數(shù)據(jù)。
 
總結(jié)
 
利用介紹的電路、雙電源和電壓表,很容易測(cè)量高電容MLCC的直流偏壓特征。簡(jiǎn)單的實(shí)驗(yàn)室測(cè)試能夠證明電容值隨偏置電壓的變化。
 
 
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
 
 
推薦閱讀:
詳解高功率放大器系統(tǒng)的單元拓?fù)浜蛿?shù)字控制原理
倒計(jì)時(shí)1天!智能制造在線展明日與您不見(jiàn)不散
如何利用高性能模擬前端信號(hào)鏈助力醫(yī)療超聲系統(tǒng)發(fā)展?
聽(tīng)說(shuō)想要出色的線性度,ADC與驅(qū)動(dòng)器更配哦~
如何提高系統(tǒng)的ESD的承受能力?
要采購(gòu)工具么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書(shū)下載更多>>
熱門(mén)搜索
?

關(guān)閉

?

關(guān)閉