【導(dǎo)讀】在PCB上靠近芯片的位置直接端接阻抗匹配和片上阻抗匹配,可以達(dá)到很高的精度和穩(wěn)定性,但是需要占用很大的面積,而且隨著系統(tǒng)復(fù)雜度的增加,多處都會(huì)用到阻抗匹配,這時(shí)就需要在片上去集成阻抗匹配電阻。而根據(jù)電阻本身的性質(zhì),可以分為無源電阻和有源電阻,這種分類屬于片上阻抗匹配的范疇。
阻抗匹配在高速串行,傳輸系統(tǒng)中,有著非常廣泛的應(yīng)用,目前主要有以下幾類實(shí)現(xiàn)方法,根據(jù)阻抗匹配的位置:
(1)PCB板上阻抗匹配
(2)片上阻抗匹配
在PCB上靠近芯片的位置直接端接阻抗匹配和片上阻抗匹配,可以達(dá)到很高的精度和穩(wěn)定性,但是需要占用很大的面積,而且隨著系統(tǒng)復(fù)雜度的增加,多處都會(huì)用到阻抗匹配,這時(shí)就需要在片上去集成阻抗匹配電阻。而根據(jù)電阻本身的性質(zhì),可以分為無源電阻和有源電阻,這種分類屬于片上阻抗匹配的范疇。無源電阻通常采用的是多晶硅電阻,可以將多晶硅直接放到終端作為匹配電阻,多晶硅具有很好的線性度和溫度特性,且電容負(fù)載小,但是去缺點(diǎn)就是精度不高。以TSMC 65nm工藝為例,其精度僅為1±30%,但是高速串行接口對(duì)匹配電阻的精度要求卻非常高,因此無論是從PVT的角度,還是從多晶硅電阻本身的精度來說,都需要對(duì)其進(jìn)行精確校準(zhǔn)。
當(dāng)前主要的校準(zhǔn)方法分為下面幾類:
偏置校準(zhǔn),主要是通過芯片內(nèi)部的電流鏡向外部精密校準(zhǔn)電阻和內(nèi)部校準(zhǔn)電阻BLOCK灌電流,通過產(chǎn)生的偏置電壓來調(diào)節(jié)需要校準(zhǔn)的電阻模塊,調(diào)節(jié)的方法也可以分為兩類:模擬電流控制和數(shù)字電壓控制。
模擬電流控制是通過模擬偏置電壓控制Vgs電壓,進(jìn)而控制流過輸出驅(qū)動(dòng)器transistor的電流,其缺陷很明顯,對(duì)干擾和噪聲很明顯;而數(shù)字電壓控制,是通過電壓來打開或者關(guān)閉并聯(lián)的輸出驅(qū)動(dòng)器,對(duì)噪聲具有很好的抑制性,也很容易進(jìn)行數(shù)字化。
I/O端接阻抗校準(zhǔn)電路如圖1所示:包括模擬和數(shù)字兩個(gè)部分,此外在芯片外部有200ohm的高精度電阻(也可以設(shè)計(jì)為其它阻抗,比如1.8K等),在芯片內(nèi)部有一個(gè)集成的參考電流鏡電流源源(提供3.25mA的DC電流),該電流鏡有3條支路,分別給TX、RX和外部REXT校準(zhǔn)電阻,而每個(gè)支路的開關(guān)是由CMOS傳輸門(TG)實(shí)現(xiàn)的(在忽略失配的情況下,電流鏡的電流假定完全一致)。詳細(xì)的電流鏡和開關(guān)電路如下圖所示:
校準(zhǔn)電路,實(shí)際上校準(zhǔn)的是TX和RX校準(zhǔn)電路的replica blocks(后面統(tǒng)一稱為復(fù)制塊),所謂復(fù)制,指的就是的復(fù)制實(shí)際上的TX/RX的input/output端接匹配電路,有一點(diǎn)差異就是, 復(fù)制塊需要校準(zhǔn)的阻值和片外精密校準(zhǔn)電阻并不一定相等,在此案例中,復(fù)制塊目標(biāo)校準(zhǔn)電阻值為200ohm。
如上圖所示,顯示了一個(gè)簡(jiǎn)單的TX到RX的link架構(gòu):TX 輸出端接電阻和輸出buffer,傳輸線(50ohm)和RX端的input端接電阻模塊,而普通的接口,TX只有1個(gè)buffer,RX只有一個(gè)差分運(yùn)放。
在校準(zhǔn)過程中,TX/RX端的端接電阻,會(huì)從校準(zhǔn)電路已經(jīng)校準(zhǔn)完成后的寄存器中中獲得復(fù)制塊的二進(jìn)制校準(zhǔn)代碼,然后在TX/RX的端接電路中設(shè)置50ohm的阻抗。因?yàn)閺?fù)制塊的牧寶校準(zhǔn)阻抗是高速Link端接阻抗的4倍,因此會(huì)在校準(zhǔn)代碼的基礎(chǔ)上進(jìn)行處理,設(shè)置在TX/RX端接電阻陣列中,從而產(chǎn)生50ohm的阻抗。
如上圖所示,復(fù)制塊電路中,包含不同阻值的GROUP,每個(gè)GROUP都有并聯(lián)的電阻和控制MOS(可以在截止或者三極管區(qū)域工作),每個(gè)電阻都可以通過MOS的開關(guān)進(jìn)行控制(使用來自邏輯塊的二進(jìn)制代碼),每個(gè)GROUP的阻值都是下一個(gè)的兩倍,在此方案就有7個(gè)GROUP,第一個(gè)電阻最?。?2X),第六個(gè)只有1個(gè)電阻(X)。
MSB[5]的二進(jìn)制代碼連接到最小的電阻GROUP(32X),LSB[5]就連接到了最大的電阻GROUP,為了避免Rcal的電阻過大,因此增加了一組最小的GREOUP(R=64X)。
校準(zhǔn)電路在各種PVT條件下,提供了200ohm的恒定電阻,但是通常電阻變化范圍可以達(dá)到±50ohm,所以在典型情況下,至少需要150~250ohm的電阻校準(zhǔn)范圍,這一條件被用于選擇每個(gè)replica模塊的電阻值。
在本文提出的解決方案中,常開的GROUP的阻值為300ohm(64X=300ohm),因此當(dāng)二進(jìn)制代碼為0的時(shí)候(Vcal=000000),總阻值就是300ohm,而當(dāng)所有的GROUP都打開時(shí)(Vcal=000000),總阻值為150ohm。
對(duì)于中間的輸入二進(jìn)制代碼,在典型的情況下,具有200ohm左右的復(fù)制模塊電阻是非常重要的。
TX和RX復(fù)制塊的校準(zhǔn)原理基本都是一樣的,但是有個(gè)小差異:TX的輸出端接電阻block是驅(qū)動(dòng)電路的一部分,上拉和下拉路徑上有兩個(gè)transistor,第一個(gè)transistor用于數(shù)據(jù)輸入,第二transistor則被TX復(fù)制塊的二進(jìn)制代碼進(jìn)行控制,因此對(duì)TX電路,只有下拉電路被用在復(fù)制塊中,在校準(zhǔn)完成之后,二進(jìn)制代碼也會(huì)被用在TX上拉電路中。事實(shí)上,TX的復(fù)制快每個(gè)電阻都可以表示為兩個(gè)NMOS管加上一個(gè)電阻串聯(lián),如下圖所示:
第一個(gè)transitor接收二進(jìn)制代碼,第二個(gè)晶體管被拉高并且常開,RX復(fù)制模塊的單電阻塊被表示為NMOS晶體管(二進(jìn)制輸入)和電阻串聯(lián)連接。
I/O端接電阻校準(zhǔn)電路有如下幾個(gè)部分組成:
(1)邏輯控制模塊;
(2)多路復(fù)用器;
(3)比較器;
邏輯控制模塊用于提供所有的數(shù)字信號(hào),比如校準(zhǔn)代碼(Vcal)、開關(guān)信號(hào)(Vswitch)用于控制電流開關(guān)、多路復(fù)用器、和復(fù)位信號(hào)去寫數(shù)據(jù)/復(fù)位寄存器(寄存器用于保存校準(zhǔn)代碼),比較器用于比較復(fù)制塊的校準(zhǔn)電壓和外部參考電壓,輸出電壓(Vcomp)作為邏輯模塊的輸入。
校準(zhǔn)過程如上表所示,從RX開始,一個(gè)3-bit的信號(hào)(由邏輯模塊產(chǎn)生),用于控制電流開關(guān),切到RX mode(這意味著沒有電流通過TX 復(fù)制塊),電流通過RX復(fù)制塊和外部校準(zhǔn)電阻,Vswitch信號(hào)會(huì)控制多路復(fù)用器并將其路徑打開。
將RX復(fù)制塊的電壓送到比較器中;在下個(gè)階段邏輯控制模塊,開始增加6-bit的校準(zhǔn)代碼(Vcal)并改變RX復(fù)制塊的阻抗,精確校準(zhǔn)依賴于校準(zhǔn)bit位(bit位越多,校準(zhǔn)的就越精確),校準(zhǔn)復(fù)制塊時(shí),將從最高值(vcal=000000)開始,此時(shí)復(fù)制塊的阻值大約是300ohm,在校準(zhǔn)結(jié)束后,復(fù)制塊的阻值最小,因?yàn)樗械碾娮鑒locks都是打開,并且是并聯(lián)狀態(tài)(Vcal=111111)。阻值也會(huì)落到150ohm,校準(zhǔn)step將會(huì)有63步。
Nstep=2^n-1
Vext是校準(zhǔn)電阻的正相輸入(外部壓降是200*Iref),RX復(fù)制模塊的電流也是恒定的(等于Iref),但是其實(shí)際阻抗在校準(zhǔn)期間是在減小的,因此RX復(fù)制塊的壓降也在減小,同時(shí),當(dāng)復(fù)制塊的壓降達(dá)到外部參考電壓時(shí)(Vact=Vext),比較器的輸出會(huì)從0切到1(Vcomp=1),此時(shí)邏輯模塊將會(huì)停止減小校準(zhǔn)碼(Vcal),并將固定的校準(zhǔn)碼存儲(chǔ)在寄存器中,這個(gè)校準(zhǔn)碼將會(huì)從寄存器中傳輸給真正的輸入端接模塊,提供固定的50ohm電阻(RX復(fù)制塊的1/4)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
如何使用降壓轉(zhuǎn)換器創(chuàng)建負(fù)電壓輸出
聚焦智能座艙及車載顯示新技術(shù),新產(chǎn)品︱盡在2024汽車工業(yè)技術(shù)博覽會(huì)
2024廣州國(guó)際新能源汽車功率半導(dǎo)體技術(shù)展5月與您相約廣州保利世貿(mào)博覽館
中國(guó)(南京)國(guó)際氫能及燃料電池產(chǎn)業(yè)大會(huì)