下一代PFC解決方案:用GaN重新考慮功率密度
發(fā)布時(shí)間:2017-06-13 責(zé)任編輯:susan
【導(dǎo)讀】電力電子世界在1959年取得突破,當(dāng)時(shí)Dawon Kahng和MarTIn Atalla在貝爾實(shí)驗(yàn)室發(fā)明了金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)。首款商業(yè)MOSFET在五年后發(fā)布生產(chǎn),從那時(shí)起,幾代MOSFET晶體管使電源設(shè)計(jì)人員實(shí)現(xiàn)了雙極性早期產(chǎn)品不可能實(shí)現(xiàn)的性能和密度級(jí)別。
然而,近年來,這些已取得的進(jìn)步開始逐漸弱化,為下一個(gè)突破性技術(shù)創(chuàng)造了空間和需求。這就是氮化鎵(GaN)引人注目的地方。
作為一種寬帶隙晶體管技術(shù),GaN正在創(chuàng)造一個(gè)令人興奮的機(jī)會(huì),以實(shí)現(xiàn)電力電子系統(tǒng)達(dá)到新的性能和效率。GaN的固有優(yōu)勢(shì)為工程師開啟了重新考慮功率密度的方法,這些方法在以前并不可能實(shí)現(xiàn),如今能滿足世界日益增長的電力需求。在這篇文章中,我將探討如何實(shí)現(xiàn)。
為何選擇GaN?
當(dāng)涉及功率密度時(shí),GaN為硅MOSFET提供了幾個(gè)主要優(yōu)點(diǎn)和優(yōu)勢(shì),包括:
• 較低的RDS(on):如表1所示,GaN的MOSFET面積為RDS(on)的一半。這直接使電路中傳導(dǎo)損耗降低了50%。因此,您可以在設(shè)計(jì)中使用較小的散熱器和更簡單的熱管理。
• 較低的柵極和輸出電荷:GaN提供較低的柵極電荷。與MOSFET的4nC相比,典型的中壓器件具有大約1nC的柵極電荷(表2)。較低的柵極電荷使設(shè)計(jì)具有更快的導(dǎo)通時(shí)間和轉(zhuǎn)換速率,同時(shí)減少損耗。
類似地,GaN具有顯著較低的輸出電荷(表2),這為每個(gè)設(shè)計(jì)帶來雙重優(yōu)勢(shì)。首先,開關(guān)損耗下降多達(dá)80%,結(jié)合較低的傳導(dǎo)損耗,對(duì)功率密度有重大和積極的影響。第二,根據(jù)拓?fù)浜蛻?yīng)用,設(shè)計(jì)可在更高的開關(guān)頻率運(yùn)行高達(dá)10倍。這大大減少了磁性材料的尺寸以及設(shè)計(jì)的尺寸和占用空間,同時(shí)將整體效率提高了15%。
• 零反向恢復(fù):硅MOSFET在50至60 nC范圍內(nèi)具有典型的反向恢復(fù)電荷,具體取決于其尺寸和特性。當(dāng)MOSFET關(guān)斷時(shí),體二極管中的反向恢復(fù)電荷(Qrr)產(chǎn)生損失,從而增加了總的系統(tǒng)開關(guān)損耗。這些損耗與開關(guān)頻率成正比。如圖1所示,較高頻率下的Qrr損耗使得MOSFET在許多應(yīng)用中變得不切實(shí)際。
1.相比GaN替代品,MOSFET的反向恢復(fù)電荷(Qrr)損耗在較高頻率下要大得多。
相比之下,GaN具有零反向恢復(fù)和零Qrr損耗,使GaN FET成為硬切換應(yīng)用的理想選擇,如稍后的示例所示。
驅(qū)動(dòng)GaN
不管所用的GaN類型如何,柵極驅(qū)動(dòng)設(shè)計(jì)對(duì)于實(shí)現(xiàn)最佳的整體性能至關(guān)重要。一個(gè)糟糕的柵極驅(qū)動(dòng)設(shè)計(jì)的一個(gè)很好的類比是在一級(jí)方程式賽車上使用街胎。
在設(shè)計(jì)柵級(jí)驅(qū)動(dòng)器時(shí),請(qǐng)注意以下幾個(gè)關(guān)鍵參數(shù):
• 偏置電壓:重要的是將柵極偏置為最佳電壓以獲得最佳的開關(guān)性能,同時(shí)保護(hù)柵極免受潛在的過壓狀況。偏置電平隨類型和GaN制造工藝而異,需要相應(yīng)設(shè)置。具有鉗位或過壓保護(hù)電路也極其關(guān)鍵。
• 環(huán)路電感:由于GaN的高壓擺率和開關(guān)頻率,設(shè)計(jì)中的任何寄生電感都會(huì)在系統(tǒng)中引入損耗和振鈴。許多電感源存在于GaN FET和驅(qū)動(dòng)器封裝中的引線和內(nèi)部接合線以及印刷電路板(PCB)跡線的設(shè)計(jì)中。雖然可將其減少,但很難消除它們。諸如LMG3410的GaN功率級(jí)解決方案將驅(qū)動(dòng)器和GaN FET集成到單個(gè)封裝中,顯著降低了總體電感。
• 傳播延遲:短傳播延遲和良好匹配(針對(duì)半橋拓?fù)洌?duì)于高頻操作非常重要。25 ns的傳播延遲和1到2 ns的匹配是高頻(1 MHz或更高)設(shè)計(jì)的一個(gè)很好的起點(diǎn)。
2.如通過優(yōu)化的驅(qū)動(dòng)器設(shè)計(jì)的GaN開關(guān)波形所證明的,GaN可以非常高速的轉(zhuǎn)換速率工作,并且使交換節(jié)點(diǎn)上的振鈴最小。
通過最佳的柵極驅(qū)動(dòng)設(shè)計(jì)和PCB布局,您可以非常高的轉(zhuǎn)換速率(》 100 V / ns)運(yùn)行GaN,使交換節(jié)點(diǎn)上的振鈴最小。圖2所示為這種設(shè)計(jì)的開關(guān)波形的示例。
設(shè)計(jì)實(shí)例:下一代PFC解決方案
由于其獨(dú)特的特性,GaN幫助電源設(shè)計(jì)人員克服了不同系統(tǒng)和應(yīng)用中功率密度方面最困難的挑戰(zhàn)。這些好處不是來自于在現(xiàn)有設(shè)計(jì)中簡單地將MOSFET替換為等效GaN。GaN使得以前不可能使用硅MOSFET實(shí)現(xiàn)的新電路拓?fù)浣Y(jié)構(gòu)和/或工作模式變?yōu)楝F(xiàn)實(shí)。顯著的優(yōu)勢(shì)導(dǎo)致新一代的產(chǎn)品尺寸更小、效率更高。我們來看一個(gè)這樣的示例。
功耗因數(shù)校正(PFC)在消耗大于75W的每個(gè)電氣或電子產(chǎn)品中是強(qiáng)制性的。PFC是位于電源和系統(tǒng)其余部分之間的第一個(gè)電源轉(zhuǎn)換模塊,并在任何給定的工作點(diǎn)承載整個(gè)負(fù)載。因此,它直接影響整個(gè)系統(tǒng)的大小和效率。
已設(shè)計(jì)出不同拓?fù)涞囊淮a(chǎn)品,旨在減小尺寸,同時(shí)滿足行業(yè)標(biāo)準(zhǔn)的效率。例如,在80 Plus中定義的效率水平對(duì)于鈦級(jí)電源需要96%的效率。
3.雙橋PFC拓?fù)渫ǔS糜谠S多大功率設(shè)計(jì)。
許多大功率系統(tǒng)(> 1 kW)采用雙橋拓?fù)浣Y(jié)構(gòu)(圖3)。隨著碳化硅(SiC)二極管和最新一代的超結(jié)MOSFET晶體管的引入,我們已經(jīng)看到過去十年中功率密度方面的改進(jìn)。然而,這些改進(jìn)已達(dá)到效率和功率密度的停滯期。
功率密度的顯著增加需要一種替代方法:
• 電源開關(guān)的數(shù)量
• 濾波電感的數(shù)量
• 電感器的尺寸
• 散熱片和冷卻元件的尺寸
一種替代方案是連續(xù)導(dǎo)通模式圖騰柱拓?fù)?。這種拓?fù)浣Y(jié)構(gòu)充分利用了GaN的所有關(guān)鍵特性,最終導(dǎo)致尺寸更小、工作頻率更高的設(shè)計(jì)(圖4)。GaN的零反向恢復(fù)對(duì)于實(shí)現(xiàn)該拓?fù)涮貏e重要。
4.圖騰柱PFC拓?fù)浣Y(jié)構(gòu)在降低工作頻率的同時(shí)降低設(shè)計(jì)尺寸,充分利用了GaN的零反向恢復(fù)。
表3總結(jié)了這種無橋PFC設(shè)計(jì)的幾個(gè)主要優(yōu)點(diǎn),并做了進(jìn)一步闡述:
• 電源開關(guān):與雙橋拓?fù)湎啾?,圖騰柱PFC替代了兩個(gè)超結(jié)MOSFET和兩個(gè)僅具有兩個(gè)GaN器件的SiC二極管。
• 濾波電感器:該拓?fù)浣Y(jié)構(gòu)消除了功率級(jí)中的一個(gè)龐大的濾波電感。電感器的去除及功率開關(guān)數(shù)量的減少也提高了整體系統(tǒng)的可靠性。
• 尺寸:由于GaN在高得多的開關(guān)頻率(通常為40至60 kHz條件下的MOSFET的四倍)條件下工作,您可使用較小的濾波電感。此外,GaN的較低開關(guān)損耗使得設(shè)計(jì)人員能夠在功率級(jí)中顯著縮小散熱片的尺寸。
• 效率:精心設(shè)計(jì)的圖騰柱PFC的高效率達(dá)99%以上。為了說明這一點(diǎn),在整個(gè)PFC階段,1 kW的功耗消耗不到10W。
• 成本:由于其現(xiàn)有制造成本,GaN器件的溢價(jià)將更高。然而,鑒于此處節(jié)省的成本,系統(tǒng)總成本應(yīng)與現(xiàn)有的MOSFET設(shè)計(jì)相當(dāng)。
現(xiàn)代圖騰柱設(shè)計(jì)還利用數(shù)字功率控制器進(jìn)一步提高效率,總諧波失真和其他關(guān)鍵設(shè)計(jì)參數(shù)。數(shù)字控制器(如C2000和UCD3138)可以智能地控制功率級(jí)操作,實(shí)時(shí)優(yōu)化效率,并響應(yīng)線路和負(fù)載條件。
結(jié)論
我們見證了需要更高功率的諸如云計(jì)算、5G電信基礎(chǔ)設(shè)施、風(fēng)電和太陽能電站及電動(dòng)和混合動(dòng)力汽車等行業(yè)的日益增長的需求。隨著硅MOSFET達(dá)到停滯期,設(shè)計(jì)人員正在探索寬帶隙技術(shù),如GaN的下一個(gè)設(shè)計(jì)。
如PFC示例所示,GaN不僅提高了效率,而且將電源的尺寸大大降低了30%至50%。你可以在隔離或非隔離的dc-dc轉(zhuǎn)換器、逆變器和其它電源轉(zhuǎn)換子系統(tǒng)中使用GaN,以顯著降低功耗、部件數(shù)量、重量和尺寸。
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC