圖1 GTO緩沖電路示意圖
如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù)
發(fā)布時(shí)間:2021-08-27 責(zé)任編輯:lina
【導(dǎo)讀】緩沖電路參數(shù)值直接影響GTO的關(guān)斷性能及整個(gè)GTO逆變器的工作性能。因此如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù),便成為重要的問(wèn)題。
1 引言
緩沖電路參數(shù)值直接影響GTO的關(guān)斷性能及整個(gè)GTO逆變器的工作性能。因此如何在設(shè)計(jì)GTO逆變器時(shí)合理設(shè)計(jì)緩沖電路參數(shù),便成為重要的問(wèn)題。
本文通過(guò)對(duì)GTO關(guān)斷過(guò)程中陽(yáng)極電流與陽(yáng)極電壓波形的分析,提出并論證了GTO陽(yáng)極電流波形與緩沖電路參數(shù)無(wú)關(guān)、緩沖二極管的反向恢復(fù)過(guò)程與緩沖電路參數(shù)無(wú)關(guān)的論點(diǎn)。在此基礎(chǔ)上,提出了一種簡(jiǎn)便、實(shí)用的緩沖電路參數(shù)優(yōu)化設(shè)計(jì)方案??筛鶕?jù)對(duì)GTO裝置性能的具體要求確定GTO緩沖電路元件 優(yōu)參數(shù)。在對(duì)GTO關(guān)斷過(guò)程中陽(yáng)極電壓及關(guān)斷功耗波形進(jìn)行仿真時(shí),為提高仿真,采用了實(shí)測(cè)的陽(yáng)極關(guān)斷電流波形。并據(jù)此推導(dǎo)出關(guān)斷功耗波形。仿真結(jié)果與實(shí)驗(yàn)波形比較,誤差極小。本文提出了一種以“綜合指標(biāo)”作為目標(biāo)函數(shù)的緩沖電路參數(shù)尋優(yōu)方案。
2 利用陽(yáng)極電流波形對(duì)陽(yáng)極電壓波形仿真的前提條件
GTO緩沖電路可等效為圖1所示電路。如要利用實(shí)測(cè)的陽(yáng)極電流對(duì)陽(yáng)極電壓進(jìn)行仿真,首先需要證明以下兩個(gè)條件成立:
(1)GTO陽(yáng)極電流波形與緩沖電路參數(shù)無(wú)關(guān);
(2)緩沖二極管的反向恢復(fù)過(guò)程與緩沖電路參數(shù)無(wú)關(guān)。
GTO緩沖電路示意圖
圖1 GTO緩沖電路示意圖
2.1 GTO陽(yáng)極電流波形與緩沖電路參數(shù)無(wú)關(guān)
圖2為GTO關(guān)斷時(shí)的陽(yáng)極電流波形。整個(gè)過(guò)程可分為3個(gè)階段:即存儲(chǔ)時(shí)間段、下降時(shí)間段及拖尾時(shí)間段。
GTO陽(yáng)極關(guān)斷電流波形示意圖
圖2 GTO陽(yáng)極關(guān)斷電流波形示意圖
在存儲(chǔ)時(shí)間段及下降時(shí)間段中,存儲(chǔ)時(shí)間ts及下降時(shí)間tf值僅取決于門極抽取能力及GTO內(nèi)部結(jié)構(gòu),而與緩沖電路參數(shù)無(wú)關(guān)。此兩段的陽(yáng)極電流波形也與緩沖電路參數(shù)無(wú)關(guān)。
在拖尾時(shí)間段,拖尾電流基本上由下降時(shí)間段的陽(yáng)極電流波形及結(jié)溫決定,與緩沖電路參數(shù)無(wú)關(guān)。
圖3中8條曲線是CS=2,3,4,5μF時(shí)的陽(yáng)極電流及陽(yáng)極電壓波形??梢?,在緩沖電路參數(shù)變化后,陽(yáng)極電壓波形變化較大,而4條陽(yáng)極電流曲線基本上完全重合。由此實(shí)驗(yàn)可驗(yàn)證以上分析的正確性。
緩沖電路參數(shù)改變后的陽(yáng)極電流
圖3 緩沖電路參數(shù)改變后的陽(yáng)極電流、陽(yáng)極電壓波形
圖中曲線(1),(2),(3),(4)為緩沖電路參數(shù)改變后的實(shí)測(cè)陽(yáng)極電壓波形;曲線(5),(6),(7),(8)為緩沖電路參數(shù)改變后的實(shí)測(cè)陽(yáng)極電流波形。
2.2 緩沖二極管的反向恢復(fù)過(guò)程與緩沖電路參數(shù)無(wú)關(guān)
儲(chǔ)存電荷Qr及恢復(fù)時(shí)間trr是緩沖二極管反向恢復(fù)過(guò)程中兩個(gè)重要參數(shù)。在分析GTO關(guān)斷過(guò)程時(shí),可近似認(rèn)為Qr,trr為常量。由圖4可證明這一點(diǎn)。圖4是改變緩沖電阻支路分布電感后測(cè)得的緩沖電阻支路電流及緩沖二極管支路電流。可見,在Lrs改變后,irs變化很大,而ids幾乎不變。即可認(rèn)為trr只與緩沖二極管本身的特性有關(guān)。
緩沖二極管恢復(fù)反向阻斷能力后的ids
圖4 緩沖二極管恢復(fù)反向阻斷能力后的ids,irs波形
圖中曲線(1),(2),(3)為L(zhǎng)rs改變前、后的實(shí)測(cè)緩沖電阻支路電流波形。
曲線(4),(5),(6)為L(zhǎng)rs改變前、后的實(shí)測(cè)緩沖二極管支路電流波形;
如圖5所示的緩沖二極管反向恢復(fù)特性曲線,t》t5后的緩沖二極管上電流近似認(rèn)為是1條二次曲線,可以較好地說(shuō)明問(wèn)題。曲線方程為:公式(1)公式(2)
式中trr—緩沖二極管恢復(fù)時(shí)間;
t5—ids=Ism的時(shí)間;
Ido—t=t7時(shí)緩沖二極管的電流值。
緩沖二極管的反向恢復(fù)特性
3 陽(yáng)極電壓波形仿真
利用GTO陽(yáng)極電壓與陽(yáng)極電流間的數(shù)學(xué)模型,使用MATLAB語(yǔ)言進(jìn)行計(jì)算機(jī)仿真,可由實(shí)測(cè)的陽(yáng)極電流波形及緩沖電路參數(shù)得到陽(yáng)極電壓的仿真波形。仿真波形與實(shí)測(cè)波形相比,誤差極小。如圖6所示,圖中曲線為CS=2μF及5μF條件下實(shí)際測(cè)得的陽(yáng)極電壓波形及相應(yīng)的仿真波形??梢?,仿真 可滿足尋優(yōu)要求。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問(wèn)題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問(wèn)題
- 當(dāng)過(guò)壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器