你的位置:首頁 > 電路保護 > 正文

如何選擇電源系統開關控制器的 MOSFET?

發(fā)布時間:2021-11-19 責任編輯:lina

【導讀】DC/DC 開關控制器的 MOSFET 選擇是一個復雜的過程。僅僅考慮 MOSFET 的額定電壓和電流并不足以選擇到合適的 MOSFET。要想讓 MOSFET 維持在規(guī)定范圍以內,必須在低柵極電荷和低導通電阻之間取得平衡。在多負載電源系統中,這種情況會變得更加復雜。


DC/DC 開關控制器的 MOSFET 選擇是一個復雜的過程。僅僅考慮 MOSFET 的額定電壓和電流并不足以選擇到合適的 MOSFET。要想讓 MOSFET 維持在規(guī)定范圍以內,必須在低柵極電荷和低導通電阻之間取得平衡。在多負載電源系統中,這種情況會變得更加復雜。


1-0.jpg

圖 1—降壓同步開關穩(wěn)壓器原理圖


DC/DC 開關電源因其高效率而廣泛應用于現代許多電子系統中。例如,同時擁有一個高側 FET和低側 FET 的降壓同步開關穩(wěn)壓器,如圖 1 所示。這兩個 FET 會根據控制器設置的占空比進行開關操作,旨在達到理想的輸出電壓。降壓穩(wěn)壓器的占空比方程式如下:


1) 占空比 (高側FET,上管) = Vout/(Vin*效率)

2) 占空比 (低側FET,下管) = 1 – DC (高側FET)


FET 可能會集成到與控制器一樣的同一塊芯片中,從而實現一種最為簡單的解決方案。但是,為了提供高電流能力及(或)達到更高效率,FET 需要始終為控制器的外部元件。這樣便可以實現最大散熱能力,因為它讓FET物理隔離于控制器,并且擁有最大的 FET 選擇靈活性。它的缺點是 FET 選擇過程更加復雜,原因是要考慮的因素有很多。


一個常見問題是“為什么不讓這種 10A FET 也用于我的 10A 設計呢?”答案是這種 10A 額定電流并非適用于所有設計。


選擇 FET 時需要考慮的因素包括額定電壓、環(huán)境溫度、開關頻率、控制器驅動能力和散熱組件面積。關鍵問題是,如果功耗過高且散熱不足,則 FET 可能會過熱起火。我們可以利用封裝/散熱組件 ThetaJA 或者熱敏電阻、FET 功耗和環(huán)境溫度估算某個 FET 的結溫,具體方法如下:


3) Tj = ThetaJA * FET 功耗(PdissFET) + 環(huán)境溫度(Tambient)


它要求計算 FET 的功耗。這種功耗可以分成兩個主要部分:AC 和 DC 損耗。這些損耗可以通過下列方程式計算得到:


4) AC損耗: AC 功耗(PswAC) = ? * Vds * Ids * (trise + tfall)/Tsw


其中,Vds 為高側 FET 的輸入電壓,Ids 為負載電流,trise 和 tfall 為 FET 的升時間和降時間,而Tsw 為控制器的開關時間(1/開關頻率)。


5) DC 損耗: PswDC = RdsOn * Iout * Iout * 占空比


其中,RdsOn 為 FET 的導通電阻,而 Iout 為降壓拓撲的負載電流。


其他損耗形成的原因還包括輸出寄生電容、門損耗,以及低側 FET 空載時間期間導電帶來的體二極管損耗,但在本文中我們將主要討論 AC 和 DC 損耗。


開關電壓和電流均為非零時,AC 開關損耗出現在開關導通和關斷之間的過渡期間。圖 2 中高亮部分顯示了這種情況。根據方程式 4),降低這種損耗的一種方法是縮短開關的升時間和降時間。通過選擇一個更低柵極電荷的 FET,可以達到這個目標。另一個因數是開關頻率。開關頻率越高,圖 3 所示升降過渡區(qū)域所花費的開關時間百分比就越大。因此,更高頻率就意味著更大的AC開關損耗。所以,降低 AC 損耗的另一種方法便是降低開關頻率,但這要求更大且通常也更昂貴的電感來確保峰值開關電流不超出規(guī)范。


如何選擇電源系統開關控制器的 MOSFET?

圖 2—AC 損耗圖


如何選擇電源系統開關控制器的 MOSFET?

圖 3—開關頻率對 AC 損耗的影響


開關處在導通狀態(tài)下出現 DC 損耗,其原因是 FET 的導通電阻。這是一種十分簡單的 I2R 損耗形成機制,如圖 4 所示。但是,導通電阻會隨 FET 結溫而變化,這便使得這種情況更加復雜。所以,使用方程式 3)、4)和 5)準確計算導通電阻時,就必須使用迭代方法,并要考慮到 FET 的溫升。降低 DC 損耗最簡單的一種方法是選擇一個低導通電阻的 FET。另外,DC 損耗大小同FET 的百分比導通時間成正比例關系,其為高側 FET控制器占空比加上 1 減去低側 FET 占空比,如前所述。由圖 5 我們可以知道,更長的導通時間就意味著更大的DC 開關損耗,因此,可以通過減小導通時間/FET 占空比來降低 DC 損耗。例如,如果使用了一個中間 DC 電壓軌,并且可以修改輸入電壓的情況下,設計人員或許就可以修改占空比。


如何選擇電源系統開關控制器的 MOSFET?

圖 4—DC 損耗圖


如何選擇電源系統開關控制器的 MOSFET?

圖 5—占空比對 DC 損耗的影響


盡管選擇一個低柵極電荷和低導通電阻的 FET 是一種簡單的解決方案,但是需要在這兩種參數之間做一些折中和平衡。低柵極電荷通常意味著更小的柵極面積/更少的并聯晶體管,以及由此帶來的高導通電阻。另一方面,使用更大/更多并聯晶體管一般會導致低導通電阻,從而產生更多的柵極電荷。這意味著,FET 選擇必須平衡這兩種相互沖突的規(guī)范。另外,還必須考慮成本因素。


低占空比設計意味著高輸入電壓,對這些設計而言,高側 FET 大多時候均為關斷,因此 DC 損耗較低。但是,高 FET 電壓帶來高 AC 損耗,所以可以選擇低柵極電荷的 FET,即使導通電阻較高。低側 FET 大多數時候均為導通狀態(tài),但是 AC 損耗卻最小。這是因為,導通/關斷期間低側 FET 的電壓因 FET 體二極管而非常地低。因此,需要選擇一個低導通電阻的 FET,并且柵極電荷可以很高。圖 7 顯示了上述情況。


如何選擇電源系統開關控制器的 MOSFET?

圖 7—低占空比設計的高側和低側 FET 功耗


如果我們降低輸入電壓,則我們可以得到一個高占空比設計,其高側 FET 大多數時候均為導通狀態(tài),如圖 8 所示。這種情況下,DC 損耗較高,要求低導通電阻。根據不同的輸入電壓,AC 損耗可能并不像低側 FET 時那樣重要,但還是沒有低側 FET 那樣低。因此,仍然要求適當的低柵極電荷。這要求在低導通電阻和低柵極電荷之間做出妥協。就低側 FET 而言,導通時間最短,且 AC 損耗較低,因此我們可以按照價格或者體積而非導通電阻和柵極電荷原則,選擇正確的 FET。


如何選擇電源系統開關控制器的 MOSFET?

圖 8—高占空比設計的高側和低側 FET 功耗


假設一個負載點 (POL) 穩(wěn)壓器時我們可以規(guī)定某個中間電壓軌的額定輸入電壓,那么最佳解決方案是什么呢,是高輸入電壓/低占空比,還是低輸入電壓/高占空比呢?使用不同輸入電壓對占空比進行調制,同時查看 FET功耗情況。


圖 9 中,高側 FET 反應曲線圖表明,占空比從 25% 增至 40% 時 AC 損耗明顯降低,而DC 損耗卻線性增加。因此,35% 左右的占空比,應為選擇電容和導通電阻平衡FET的理想值。不斷降低輸入電壓并提高占空比,可以得到最低的AC 損耗和最高的 DC 損耗,就此而言,我們可以使用一個低導通電阻的 FET,并折中選擇高柵極電荷。如低側 FET 圖 10 所示,控制器占空比由低升高時 DC 損耗線性降低(低側 FET 導通時間更短),高控制器占空比時損耗最小。整個電路板的AC 損耗都很低,因此任何情況下都應選擇使用低導通電阻的 FET。


如何選擇電源系統開關控制器的 MOSFET?

圖 9—高側FET 損耗與占空比的關系


如何選擇電源系統開關控制器的 MOSFET?

圖 10—低側 FET 損耗與控制器占空比的關系。


請注意:低側 FET 占空比為 1-控制器占空比,因此低側 FET 導通時間隨控制器占空比增加而縮短


圖 11 顯示了我們將高側和低側損耗組合到一起時總效率的變化情況。我們可以看到,這種情況下,高占空比時組合 FET 損耗最低,并且效率最高。效率從 94.5% 升高至 96.5%。不幸的是,為了獲得低輸入電壓,我們必須降低中間電壓軌電源的電壓,使其占空比增加,原因是它通過一個固定輸入電源供電。因此,這樣可能會抵消在 POL 獲得的部分或者全部增益。另一種方法是不使用中間軌,而是直接從輸入電源到 POL 穩(wěn)壓器,目的是降低穩(wěn)壓器數。這時,占空比較低,我們必須小心地選擇 FET。


如何選擇電源系統開關控制器的 MOSFET?

圖 11—總損耗與效率和占空比的關系


在有多個輸出電壓和電流要求的電源系統中,情況會更加復雜。對比不同 POL 穩(wěn)壓器占空比的效率、成本和體積。圖 12 顯示了一個系統,其輸入電壓為 28V,共有 8 個負載,4 個不同電壓,范圍為 3.3V 到 1.25V。共有 3 種對比方法:1)無中間軌,直接通過輸入電源提供 28V 電壓,以實現 POL 穩(wěn)壓器的低占空比;2)使用 12V 中間軌,POL穩(wěn)壓器中等占空比;3)使用 5V 中間軌,高 POL 穩(wěn)壓器占空比。圖 13 和表 1 顯示了對比結果。這種情況下,無中間軌電源的構架實現了最低成本,12V中間軌電壓的構架獲得了最高效率,而 5V 中間軌電壓構架則實現了最小體積。因此,我們可以看到,對于這種大型系統而言,單POL電源情況下我們所看到的這些參數均沒有明顯的趨向。這是因為,使用多個穩(wěn)壓器時,除中間軌穩(wěn)壓器本身以外,每個穩(wěn)壓器都有其不同的負載電流和電壓要求,而這些需求可能會相互沖突。研究這種情況的最佳方法是使用如 WEBENCH 電源設計師等工具,對不同的選項進行評估


如何選擇電源系統開關控制器的 MOSFET?

圖 12—表明輸入、中間軌、負載點 (POL) 電源和負載的電源系統。中間軌電壓的不同選擇為 28V(直接使用輸入電源)、12V 和 5V。這會帶來不同的 POL 穩(wěn)壓器占空比。


如何選擇電源系統開關控制器的 MOSFET?

圖 13 電源設計曲線圖,其表明中間軌電壓對電源系統效率、體積和成本的影響。圓直徑為 BOM(材料清單)價格。


如何選擇電源系統開關控制器的 MOSFET?

表 1—中間軌電壓對電源系統效率、體積和成本的影響。

(來源:電子芯期天公眾號)


免責聲明:本文為轉載文章,轉載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請電話或者郵箱editor@52solution.com聯系小編進行侵刪。



推薦閱讀:

如何實現最佳的DCM反激式轉換器設計?

模擬問題:用波德圖繪制振蕩器

如何在48V系統中輕松應用GaN FET?

逆變直流電焊機的工作原理

干貨 | 指定支持Wi-Fi?的MCU時的注意事項

特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉