【導(dǎo)讀】功耗密集型應(yīng)用的設(shè)計人員需要更小、更輕、更節(jié)能的電源轉(zhuǎn)換器,能夠在更高電壓和溫度下工作。在電動汽車 (EV) 等應(yīng)用中尤其如此,若能實現(xiàn)這些改進,可加快充電速度、延長續(xù)航里程。為了實現(xiàn)這些改進,設(shè)計人員目前使用基于寬帶隙 (WBG) 技術(shù)的電源轉(zhuǎn)換器,例如碳化硅 (SiC) 電源轉(zhuǎn)換器。
功耗密集型應(yīng)用的設(shè)計人員需要更小、更輕、更節(jié)能的電源轉(zhuǎn)換器,能夠在更高電壓和溫度下工作。在電動汽車 (EV) 等應(yīng)用中尤其如此,若能實現(xiàn)這些改進,可加快充電速度、延長續(xù)航里程。為了實現(xiàn)這些改進,設(shè)計人員目前使用基于寬帶隙 (WBG) 技術(shù)的電源轉(zhuǎn)換器,例如碳化硅 (SiC) 電源轉(zhuǎn)換器。
與硅 (Si) 轉(zhuǎn)換器相比,這類器件的工作電壓更高、重量更輕,但功率處理能力相似。它們還能在更高的溫度下工作,從而減少對冷卻系統(tǒng)的需求。SiC 器件可以在更高的開關(guān)頻率下工作,因而允許使用更小的無源元器件,減小了轉(zhuǎn)換器的尺寸和重量。并且,SiC 仍在不斷發(fā)展,最新的研究成果是“導(dǎo)通”電阻降低,進一步減小了功率損耗。
本文以電動汽車為背景,簡要討論了 SiC 相對于 Si 的優(yōu)勢。隨后討論了 SiC 的發(fā)展,然后介紹了 ROHM Semiconductor 的第四代 SiC MOSFET,并說明它們?nèi)绾螏椭O(shè)計人員降低功耗和成本以及減小基底面
為何使用 SiC?
電動汽車需要擴充電池容量才能增加續(xù)航里程。在這種趨勢下,為了縮短充電時間,電池電壓被提高到 800 V。因此,電動汽車設(shè)計人員需要能夠耐受更高電壓,同時又能減少電力損耗和重量的器件。ROHM Semiconductor 的第四代 SiC MOSFET 具有更高的電壓耐受水平、更低的傳導(dǎo)和開關(guān)損耗以及更小的尺寸,可降低損耗。
SiC 是一種 WBG 半導(dǎo)體,與 Si MOSFET 技術(shù)相比,在高壓功率開關(guān)應(yīng)用中的能效異常突出。通過對 SiC 和 Si 的物理特性進行比較,可以看出這種改進主要基于 5 個物理特性:擊穿電場、帶隙、導(dǎo)熱率和熔點(圖 1)。
圖 1:從 5 個物理特性看 SiC 相對于 Si MOSFET 的優(yōu)勢。(圖片來源:ROHM Semiconductors)
SiC 的擊穿電場強度是 Si 的 10 倍,因而可以設(shè)計具有更高擊穿電壓的器件,同時減小器件厚度。SiC 的帶隙更寬,允許器件在更高的溫度下工作。熱導(dǎo)率更高,減少了冷卻設(shè)備所需的工作量,而較高的熔點則增加了工作溫度范圍。最后,SiC 的飽和電子漂移速度更高,可實現(xiàn)更高的開關(guān)頻率和更低的開關(guān)損耗。開關(guān)頻率更高,則需要的濾波器和其他無源元器件更小,從而進一步減小尺寸和重量。
MOSFET 的發(fā)展
最初的 SiC MOSFET 采用平面結(jié)構(gòu),器件柵極和溝道位于半導(dǎo)體表面。由于為提高器件產(chǎn)量而可減小的設(shè)計尺寸受限,因此平面器件的元器件密度有限。使用單溝槽和雙溝槽型 MOSFET 能夠?qū)崿F(xiàn)更高的器件密度(圖 2)。
圖 2:溝槽型 MOSFET 通過豎向排布器件元件實現(xiàn)了更高的器件密度。(圖片來源:ROHM Semiconductor)
與其他 MOSFET 類似,溝槽型 MOSFET 單元包含漏極、柵極和源極,但豎向排列。借助場效應(yīng),形成豎向溝道,與柵極溝槽平行。電流的流向是從源極豎向流到漏極。與橫向排布并占用大量表面積的平面器件相比,這種結(jié)構(gòu)非常緊湊。
單溝槽結(jié)構(gòu)使用單柵極溝槽。雙溝槽器件既有柵極溝槽,也有源極溝槽。ROHM Semiconductor 在其第三代 SiC MOSFET 中采用了雙溝槽結(jié)構(gòu)。第四代設(shè)計改進了雙溝槽設(shè)計,減小了單元尺寸,進一步降低了導(dǎo)通電阻和寄生電容,從而大幅降低了功率損耗,并提供使用更小 SiC 器件的選擇,以支持更具成本效益的系統(tǒng)設(shè)計。
降低 MOSFET 的導(dǎo)通電阻可能會影響其處理短路的能力。但是,第四代 SiC MOSFET 在不犧牲短路耐受時間的前提下實現(xiàn)了更低的導(dǎo)通電阻,從而使這些器件在實現(xiàn)高能效和強大的短路穩(wěn)健性方面具有顯著優(yōu)勢。
了解損耗
開關(guān)模式轉(zhuǎn)換器的損耗來自多個方面;與有源器件相關(guān)的損耗包括傳導(dǎo)損耗、開關(guān)損耗和體二極管損耗(圖 3)。
圖 3:降壓式 DC/DC 轉(zhuǎn)換器的示意圖,標出了開關(guān)波形和相關(guān)損耗波形。(圖片來源:ROHM Semiconductor)
降壓轉(zhuǎn)換器采用圖騰柱設(shè)計,帶有一個高壓側(cè) (SH) 和一個低壓側(cè) (SL) MOSFET 開關(guān)。這些開關(guān)為異相驅(qū)動,因此每次只有一個開關(guān)導(dǎo)通。柵極驅(qū)動波形(VGSH 和 VGSL)顯示了因器件寄生電容的相關(guān)充電間隔而產(chǎn)生的振幅階躍。圖中顯示了兩種器件的漏極至源極電壓(VDSH、VDSL)和漏極電流(IDH、IDL)波形。器件導(dǎo)通時,VDS 為低電平。器件關(guān)斷時,VDS 為高電平。在 SH 導(dǎo)通期間,漏極電流線性增加,同時對電感器的磁場充電。在此期間,通過溝道電阻的電流會在溝道上產(chǎn)生電壓,從而導(dǎo)致傳導(dǎo)損耗 (PCOND),該損耗與電流的平方和溝道導(dǎo)通電阻成正比。在器件改變狀態(tài)的時間間隔內(nèi),電壓和電流都不為零,器件的耗散功率與電壓、電流、開關(guān)轉(zhuǎn)換時間和開關(guān)頻率成正比。這就是開關(guān)損耗。
SL 導(dǎo)通時也會出現(xiàn)類似情況。在這種情況下,當電感器中儲存的能量為下部器件提供漏極電流時,電流呈線性下降。同樣,溝道電阻作為傳導(dǎo)損耗耗散功率。請注意,在電流變?yōu)榉橇阒?,下部器件中?VDSL 接近零,因此周期的這一部分不存在開關(guān)損耗。
恢復(fù)損耗 (PQrr) 是由器件體二極管的恢復(fù)導(dǎo)致;為簡單起見,僅顯示高壓側(cè)的恢復(fù)損耗。
Pbody 是器件的體二極管傳導(dǎo)損耗。此損耗是由通過低壓側(cè)器件的體二極管傳導(dǎo)的電流產(chǎn)生。
總功率損耗是兩個晶體管所有這些分量的總和。
第四代 SiC MOSFET 的性能提高
我們使用一款 5 kW 全橋逆變器對 Si IGBT 以及第三代和第四代 SiC MOSFET 的性能進行了比較(圖 4)。在這種全橋電路中,開關(guān)器件并聯(lián)在一起,以獲得更大的電流能力。全橋共使用 8 個器件。左圖中的 8 個器件安裝在散熱片上。我們用原始 IGBT 以及第三代和第四代 MOSFET 對電路的能效進行了評估。該逆變器的 SiC MOSFET 開關(guān)頻率為 40 kHz,IGBT 開關(guān)頻率為 20 kHz。
圖 4:5 kW 無風(fēng)扇逆變器及其原理圖。該電路最初設(shè)計使用硅 IGBT,運行頻率為 20 kHz,后來使用第三代和第四代 SiC MOSFET,運行頻率為 40 kHz。對所有三種半導(dǎo)體類型的性能進行了比較。(圖片來源:ROHM Semiconductor)
第三代器件是 ROHM Semiconductor SCT3030AL 器件,額定電壓為 650 V,溝道電阻 (RDS(ON)) 為 30 mΩ。第四代 MOSFET 是 ROHM Semiconductor SCT4026DEC11。第四代器件的額定電壓提升至 750 V。其 RDS(ON) 為 26 mΩ,降低了 13%,從而略微減少了傳導(dǎo)損耗。
比較這兩種 SiC MOSFET 的損耗與原始 IGBT 的損耗,可以看出能效有所提高(圖 5)。
圖 5:與原始 Si IGBT 和第三代器件相比,第四代 SiC MOSFET 大幅降低了損耗。(圖片來源:ROHM Semiconductor)
與第三代器件相比,第四代器件的傳導(dǎo)損耗(藍色)從 10.7 W 降至 9.82 W。開關(guān)損耗(橙色)降幅更為明顯,從 16.6 W 降至 8.22 W。
第四代器件的其他改進還包括柵極驅(qū)動能力的提高。第四代 SiC MOSFET 支持 15 V 驅(qū)動;第三代器件需要 18 V。這意味著設(shè)計使用硅器件的電路可以使用第四代 MOSFET 作為直接替代品。此外,對于第四代 SiC MOSFET,關(guān)斷期間的推薦驅(qū)動電壓為 0 V。在第四代產(chǎn)品之前,柵極至源極電壓在關(guān)斷期間需要一個負偏置,以防止自導(dǎo)通。不過,在第四代器件中,閾值電壓 (Vth) 設(shè)計較高,以抑制自導(dǎo)通,從而無需施加負偏置。
第四代解決方案
ROHM Semiconductor 的第四代 SiC MOSFET 解決方案根據(jù)器件封裝分為兩組。本文討論的 SCT4026DEC11 是一款 750 V、56 A (+25°C)/29 A (+100°C)、26 mΩ SiC MOSFET,采用三引線 TO-247N 封裝。替代四引線封裝方案的一個示例是 SCT4013DRC15,該器件是一款 750 V、105 A (+25°C)/74 A (+100°C) 的 13 mΩ 器件,采用四引線 TO-247-4L 封裝。
四引線封裝增加了一條引線,從而提高了 MOSFET 的開關(guān)速度。傳統(tǒng)的 TO-247N 三引線封裝無法將柵極驅(qū)動與高漏極電流導(dǎo)致的寄生源極引線電感隔離開。柵極電壓施加在柵極和源極引腳之間。由于源極寄生電感 (VL) 上的壓降,芯片上的有效柵極電壓降低,導(dǎo)致開關(guān)速度降低(圖 6)。
圖 6:TO-247-4L 上的第四個引腳利用開爾文連接中的額外連接引腳將柵極驅(qū)動與電源引腳隔離。(圖片來源:ROHM Semiconductor)
四引腳 TO-247-4L 封裝將柵極驅(qū)動和電源引腳分開,在內(nèi)部將柵極驅(qū)動直接連接到源極。這樣可以最大限度地減少源極引腳寄生電感的影響。與傳統(tǒng)的三引腳 TO-247N 封裝相比,柵極驅(qū)動直接接入內(nèi)部源極連接可最大限度地提高 SiC MOSFET 的開關(guān)速度,將總開關(guān)損耗(導(dǎo)通和關(guān)斷)降低達 35%。
第四代 SiC MOSFET 的第二個差異化規(guī)格是額定電壓。器件的額定電壓為 750 V 或 1200 V。前面討論的兩個器件的額定電壓為 750 V。對于更高的電壓應(yīng)用,SCT4062KEC11 是一款 1200 V、62 mΩ、26 A (+25°C)/18 A (+100°C) SiC N 溝道 MOSFET,采用三引線 TO-247N 封裝;而 SCT4036KRC15 是一款 1200 V、36 mΩ、43 A (+25°C)/30 A (+100°C) N 溝道 MOSFET,采用四引線 TO-247-4L 封裝。目前共有 10 款第四代 SiC MOSFET,在 +25°C 時的額定電流為 26 A 至 105 A。這些器件的 RDS(ON) 值從 13 到 62 mΩ 不等。
EV 應(yīng)用
第四代 SiC MOSFET 的規(guī)格非常適合電動汽車應(yīng)用。例如電壓為 400 V 或 800 V 的電池電動車 (BEV)(圖 7)。
圖 7:第四代 SiC MOSFET 在 BEV 和相關(guān)外部配件中的典型應(yīng)用。(圖片來源:ROHM Semiconductor)
圖 7 所示為電池電壓為 400 V 或 800 V、支持雙向快充的 BEV 方框圖。車載充電器 (OBC) 包括圖騰柱功率因數(shù)校正電路 (PFC) 和雙向全橋 CLLC(電容器、電感器、電感器、電容器)諧振轉(zhuǎn)換器。外部“Quiq”直流充電器可直接為電池充電。電池驅(qū)動牽引逆變器,逆變器將直流電轉(zhuǎn)換為三相交流電,從而驅(qū)動電機。所有這些電路均在各種電路配置中采用了 MOSFET 來處理所需的功率水平。第四代 SiC MOSFET 的重要性在于,它們能減小電路物理尺寸,提高額定電壓,同時降低損耗和成本。
總結(jié)
對于電動汽車、數(shù)據(jù)中心和基站等高電壓、大功率應(yīng)用的設(shè)計人員來說,第四 SiC MOSFET 是關(guān)鍵性功率開關(guān)器件。如上所述,它們采用獨特的結(jié)構(gòu),能夠減少損耗從而大幅提高功率轉(zhuǎn)換效率,同時還可減少基底面并降低成本。
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進行處理。
推薦閱讀:
數(shù)字隔離器:系統(tǒng)和人身安全的隱形守護者
工信部楊旭東:推動上下游“車-芯”合作,促進產(chǎn)業(yè)鏈協(xié)同發(fā)展
降低電池儲能系統(tǒng)火災(zāi)風(fēng)險的三個步驟
通過 SPICE 仿真預(yù)測 VDS 開關(guān)尖峰