你的位置:首頁(yè) > 測(cè)試測(cè)量 > 正文

名家剖析:全面解讀語(yǔ)音識(shí)別技術(shù)及原理

發(fā)布時(shí)間:2015-06-18 責(zé)任編輯:echolady

【導(dǎo)讀】語(yǔ)音識(shí)別技術(shù)自從被發(fā)現(xiàn)開(kāi)始就是當(dāng)今的熱點(diǎn)話題。語(yǔ)音識(shí)別一語(yǔ)音為研究對(duì)象,經(jīng)過(guò)一系列處理成為機(jī)器能夠是別的語(yǔ)音信號(hào)。語(yǔ)音識(shí)別技術(shù)已經(jīng)充斥了我們的生活,例如機(jī)器人語(yǔ)音識(shí)別。本文就由名家解析語(yǔ)音識(shí)別技術(shù)及其原理。

語(yǔ)音識(shí)別是以語(yǔ)音為研究對(duì)象,通過(guò)語(yǔ)音信號(hào)處理和模式識(shí)別讓機(jī)器自動(dòng)識(shí)別和理解人類口述的語(yǔ)言。語(yǔ)音識(shí)別技術(shù)就是讓機(jī)器通過(guò)識(shí)別和理解過(guò)程把語(yǔ) 音信號(hào)轉(zhuǎn)變?yōu)橄鄳?yīng)的文本或命令的高技術(shù)。語(yǔ)音識(shí)別是一門涉及面很廣的交叉學(xué)科,它與聲學(xué)、語(yǔ)音學(xué)、語(yǔ)言學(xué)、信息理論、模式識(shí)別理論以及神經(jīng)生物學(xué)等學(xué)科都 有非常密切的關(guān)系。語(yǔ)音識(shí)別技術(shù)正逐步成為計(jì)算機(jī)信息處理技術(shù)中的關(guān)鍵技術(shù),語(yǔ)音技術(shù)的應(yīng)用已經(jīng)成為一個(gè)具有競(jìng)爭(zhēng)性的新興高技術(shù)產(chǎn)業(yè)。

1、語(yǔ)音識(shí)別的基本原理

語(yǔ)音識(shí)別系統(tǒng)本質(zhì)上是一種模式識(shí)別系統(tǒng),包括特征提取、模式匹配、參考模式庫(kù)等三個(gè)基本單元,它的基本結(jié)構(gòu)如下圖所示:

全面解讀語(yǔ)音識(shí)別技術(shù)及原理
 
未知語(yǔ)音經(jīng)過(guò)話筒變換成電信號(hào)后加在識(shí)別系統(tǒng)的輸入端,首先經(jīng)過(guò)預(yù)處理,再根據(jù)人的語(yǔ)音特點(diǎn)建立語(yǔ)音模型,對(duì)輸入的語(yǔ)音信號(hào)進(jìn)行分析,并抽取所需的特 征,在此基礎(chǔ)上建立語(yǔ)音識(shí)別所需的模板。而計(jì)算機(jī)在識(shí)別過(guò)程中要根據(jù)語(yǔ)音識(shí)別的模型,將計(jì)算機(jī)中存放的語(yǔ)音模板與輸入的語(yǔ)音信號(hào)的特征進(jìn)行比較,根據(jù)一定 的搜索和匹配策略,找出一系列最優(yōu)的與輸入語(yǔ)音匹配的模板。然后根據(jù)此模板的定義,通過(guò)查表就可以給出計(jì)算機(jī)的識(shí)別結(jié)果。顯然,這種最優(yōu)的結(jié)果與特征的選 擇、語(yǔ)音模型的好壞、模板是否準(zhǔn)確都有直接的關(guān)系。

2、語(yǔ)音識(shí)別技術(shù)的發(fā)展歷史及現(xiàn)狀

十個(gè)英文數(shù)字的特定人語(yǔ)音增強(qiáng)系統(tǒng)一Audry系統(tǒng)1956年,美國(guó)普林斯 頓大學(xué)RCA實(shí)驗(yàn)室的Olson和Belar等人研制出能10個(gè)單音節(jié)詞的系統(tǒng),該系統(tǒng)采用帶通濾波器組獲得的頻譜參數(shù)作為語(yǔ)音增強(qiáng)特征。1959 年,F(xiàn)ry和Denes等人嘗試構(gòu)建音素器來(lái)4個(gè)元音和9個(gè)輔音,并采用頻譜分析和模式匹配進(jìn)行決策。這就大大提高了語(yǔ)音識(shí)別的效率和準(zhǔn)確度。
從此計(jì)算機(jī) 語(yǔ)音識(shí)別的受到了各國(guó)科研人員的重視并開(kāi)始進(jìn)入語(yǔ)音識(shí)別的研究。60年代,蘇聯(lián)的Matin等提出了語(yǔ)音結(jié)束點(diǎn)的端點(diǎn)檢測(cè),使語(yǔ)音識(shí)別水平明顯上 升;Vintsyuk提出了動(dòng)態(tài)編程,這一提法在以后的識(shí)別中不可或缺。

60年代末、70年代初的重要成果是提出了信號(hào)線性預(yù)測(cè)編碼(LPC)技術(shù)和動(dòng)態(tài) 時(shí)間規(guī)整(DTW)技術(shù),有效地解決了語(yǔ)音信號(hào)的特征提取和不等長(zhǎng)語(yǔ)音匹配問(wèn)題;同時(shí)提出了矢量量化(VQ)和隱馬爾可夫模型(HMM)理論。語(yǔ)音識(shí)別技 術(shù)與語(yǔ)音合成技術(shù)結(jié)合使人們能夠擺脫鍵盤的束縛,取而代之的是以語(yǔ)音輸入這樣便于使用的、自然的、人性化的輸入方式,它正逐步成為信息技術(shù)中人機(jī)接口的關(guān) 鍵技術(shù)。

3、語(yǔ)音識(shí)別的方法

目前具有代表性的語(yǔ)音識(shí)別方法主要有動(dòng)態(tài)時(shí)間規(guī)整技術(shù)(DTW)、隱馬爾可夫模型(HMM)、矢量量化(VQ)、人工神經(jīng)網(wǎng)絡(luò)(ANN)、支持向量機(jī)(SVM)等方法。

動(dòng)態(tài)時(shí)間規(guī)整算法(Dynamic Time Warping,DTW)是在非特定人語(yǔ)音識(shí)別中一種簡(jiǎn)單有效的方法,該算法基于動(dòng)態(tài)規(guī)劃的思想,解決了發(fā)音長(zhǎng)短不一的模板匹配問(wèn)題,是語(yǔ)音識(shí)別技術(shù)中出 現(xiàn)較早、較常用的一種算法。在應(yīng)用DTW算法進(jìn)行語(yǔ)音識(shí)別時(shí),就是將已經(jīng)預(yù)處理和分幀過(guò)的語(yǔ)音測(cè)試信號(hào)和參考語(yǔ)音模板進(jìn)行比較以獲取他們之間的相似度,按 照某種距離測(cè)度得出兩模板間的相似程度并選擇最佳路徑。

隱馬爾可夫模型(HMM)是語(yǔ)音信號(hào)處理中的一種統(tǒng)計(jì)模型,是由Markov鏈 演變來(lái)的,所以它是基于參數(shù)模型的統(tǒng)計(jì)識(shí)別方法。由于其模式庫(kù)是通過(guò)反復(fù)訓(xùn)練形成的與訓(xùn)練輸出信號(hào)吻合概率最大的最佳模型參數(shù)而不是預(yù)先儲(chǔ)存好的模式樣 本,且其識(shí)別過(guò)程中運(yùn)用待識(shí)別語(yǔ)音序列與HMM參數(shù)之間的似然概率達(dá)到最大值所對(duì)應(yīng)的最佳狀態(tài)序列作為識(shí)別輸出,因此是較理想的語(yǔ)音識(shí)別模型。

矢量量化(Vector Quantization)是一種重要的信號(hào)壓縮方法。與HMM相比,矢量量化主要適用于小詞匯量、孤立詞的語(yǔ)音識(shí)別中。其過(guò)程是將若干個(gè)語(yǔ)音信號(hào)波形或 特征參數(shù)的標(biāo)量數(shù)據(jù)組成一個(gè)矢量在多維空間進(jìn)行整體量化。把矢量空間分成若干個(gè)小區(qū)域,每個(gè)小區(qū)域?qū)ふ乙粋€(gè)代表矢量,量化時(shí)落入小區(qū)域的矢量就用這個(gè)代表 矢量代替。矢量量化器的設(shè)計(jì)就是從大量信號(hào)樣本中訓(xùn)練出好的碼書,從實(shí)際效果出發(fā)尋找到好的失真測(cè)度定義公式,設(shè)計(jì)出最佳的矢量量化系統(tǒng),用最少的搜索和 計(jì)算失真的運(yùn)算量實(shí)現(xiàn)最大可能的平均信噪比。

在實(shí)際的應(yīng)用過(guò)程中,人們還研究了多種降低復(fù)雜度的方法,包括無(wú)記憶的矢量量化、有記憶的矢量量化和模糊矢量量化方法。

人工神經(jīng)網(wǎng)絡(luò)(ANN)是20世紀(jì)80年代末期提出的一種新的語(yǔ)音識(shí)別方法。其本質(zhì)上是一個(gè)自適應(yīng)非線性動(dòng)力學(xué)系統(tǒng),模擬了人類神經(jīng)活動(dòng)的原理,具有自 適應(yīng)性、并行性、魯棒性、容錯(cuò)性和學(xué)習(xí)特性,其強(qiáng)大的分類能力和輸入—輸出映射能力在語(yǔ)音識(shí)別中都很有吸引力。其方法是模擬人腦思維機(jī)制的工程模型,它與 HMM正好相反,其分類決策能力和對(duì)不確定信息的描述能力得到舉世公認(rèn),但它對(duì)動(dòng)態(tài)時(shí)間信號(hào)的描述能力尚不盡如人意,通常MLP分類器只能解決靜態(tài)模式分 類問(wèn)題,并不涉及時(shí)間序列的處理。

盡管學(xué)者們提出了許多含反饋的結(jié)構(gòu),但它們?nèi)圆蛔阋钥坍嬛T如語(yǔ)音信號(hào)這種時(shí)間序列的動(dòng)態(tài)特性。由于ANN不能很好地描述 語(yǔ)音信號(hào)的時(shí)間動(dòng)態(tài)特性,所以常把ANN與傳統(tǒng)識(shí)別方法結(jié)合,分別利用各自優(yōu)點(diǎn)來(lái)進(jìn)行語(yǔ)音識(shí)別而克服HMM和ANN各自的缺點(diǎn)。近年來(lái)結(jié)合神經(jīng)網(wǎng)絡(luò)和隱含 馬爾可夫模型的識(shí)別算法研究取得了顯著進(jìn)展,其識(shí)別率已經(jīng)接近隱含馬爾可夫模型的識(shí)別系統(tǒng),進(jìn)一步提高了語(yǔ)音識(shí)別的魯棒性和準(zhǔn)確率。

支持向量機(jī)(Support vector machine)是應(yīng)用統(tǒng)計(jì)學(xué)理論的一種新的學(xué)習(xí)機(jī)模型,采用結(jié)構(gòu)風(fēng)險(xiǎn)最小化原理(Structural Risk Minimization,SRM),有效克服了傳統(tǒng)經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化方法的缺點(diǎn)。兼顧訓(xùn)練誤差和泛化能力,在解決小樣本、非線性及高維模式識(shí)別方面有許多 優(yōu)越的性能,已經(jīng)被廣泛地應(yīng)用到模式識(shí)別領(lǐng)域。

4、語(yǔ)音識(shí)別系統(tǒng)的分類

語(yǔ)音識(shí)別系統(tǒng)可以根據(jù)對(duì)輸入語(yǔ)音的限制加以分類。如果從說(shuō)話者與識(shí)別系統(tǒng)的相關(guān)性考慮,可以將識(shí)別系統(tǒng)分為三類:(1)特定人語(yǔ)音識(shí)別系統(tǒng)。僅考慮對(duì)于專人的話音 進(jìn)行識(shí)別。(2)非特定人語(yǔ)音系統(tǒng)。識(shí)別的語(yǔ)音與人無(wú)關(guān),通常要用大量不同人的語(yǔ)音數(shù)據(jù)庫(kù)對(duì)識(shí)別系統(tǒng)進(jìn)行學(xué)習(xí)。(3)多人的識(shí)別系統(tǒng)。通常能識(shí)別一組人的 語(yǔ)音,或者成為特定組語(yǔ)音識(shí)別系統(tǒng),該系統(tǒng)僅要求對(duì)要識(shí)別的那組人的語(yǔ)音進(jìn)行訓(xùn)練。

如果從說(shuō)話的方式考慮,也可以將識(shí)別系統(tǒng)分為三類:(1)孤立詞語(yǔ)音識(shí)別系統(tǒng)。孤立詞識(shí)別系統(tǒng)要求輸入每個(gè)詞后要停頓。(2)連接詞語(yǔ)音識(shí)別系統(tǒng)。連接詞輸入系統(tǒng)要求對(duì)每個(gè)詞都清楚發(fā)音,一些連音現(xiàn)象開(kāi)始 出現(xiàn)。(3)連續(xù)語(yǔ)音識(shí)別系統(tǒng)。連續(xù)語(yǔ)音輸入是自然流利的連續(xù)語(yǔ)音輸入,大量連音和變音會(huì)出現(xiàn)。

如果從識(shí)別系統(tǒng)的詞匯量大小考慮,也可 以將識(shí)別系統(tǒng)分為三類:(1)小詞匯量語(yǔ)音識(shí)別系統(tǒng)。通常包括幾十個(gè)詞的語(yǔ)音識(shí)別系統(tǒng)。(2)中等詞匯量的語(yǔ)音識(shí)別系統(tǒng)。通常包括幾百個(gè)詞到上千個(gè)詞的識(shí) 別系統(tǒng)。(3)大詞匯量語(yǔ)音識(shí)別系統(tǒng)。通常包括幾千到幾萬(wàn)個(gè)詞的語(yǔ)音識(shí)別系統(tǒng)。隨著計(jì)算機(jī)與數(shù)字信號(hào)處理器運(yùn)算能力以及識(shí)別系統(tǒng)精度的提高,識(shí)別系統(tǒng)根據(jù) 詞匯量大小進(jìn)行分類也不斷進(jìn)行變化。目前是中等詞匯量的識(shí)別系統(tǒng),將來(lái)可能就是小詞匯量的語(yǔ)音識(shí)別系統(tǒng)。這些不同的限制也確定了語(yǔ)音識(shí)別系統(tǒng)的困難度。

5、語(yǔ)音識(shí)別的應(yīng)用

語(yǔ)音識(shí)別可以應(yīng)用的領(lǐng)域大致分為大五類:

辦公室或商務(wù)系統(tǒng)。典型的應(yīng)用包括:填寫數(shù)據(jù)表格、數(shù)據(jù)庫(kù)管理和控制、鍵盤功能增強(qiáng)等等。

制造業(yè):在質(zhì)量控制中,語(yǔ)音識(shí)別系統(tǒng)可以為制造過(guò)程提供一種“不用手”、“不用眼”的檢控(部件檢查)。

電信:相當(dāng)廣泛的一類應(yīng)用在撥號(hào)電話系統(tǒng)上都是可行的,包括話務(wù)員協(xié)助服務(wù)的自動(dòng)化、國(guó)際國(guó)內(nèi)遠(yuǎn)程電子商務(wù)、語(yǔ)音呼叫分配、語(yǔ)音撥號(hào)、分類訂貨。

醫(yī)療:這方面的主要應(yīng)用是由聲音來(lái)生成和編輯專業(yè)的醫(yī)療報(bào)告。

其他:包括由語(yǔ)音控制和操作的游戲和玩具、幫助殘疾人的語(yǔ)音識(shí)別系統(tǒng)、車輛行駛中一些非關(guān)鍵功能的語(yǔ)音控制,如車載交通路況控制系統(tǒng)、音響系統(tǒng)。

未來(lái)隨著手持設(shè)備的小型化,甚至穿戴化,各種智能眼鏡,手表等層出不窮,當(dāng)然找準(zhǔn)市場(chǎng)突破口很重要,好的解決方案和系統(tǒng)設(shè)計(jì)參考也是必不可少的。

相關(guān)閱讀:

科技圈熱點(diǎn)之語(yǔ)音識(shí)別原理及系統(tǒng)分類
熟透語(yǔ)音識(shí)別技術(shù),軍事斗爭(zhēng)領(lǐng)域你就是"王"
家庭監(jiān)護(hù)機(jī)器人有突破!語(yǔ)音識(shí)別系統(tǒng)“箭在弦上”

要采購(gòu)鍵盤么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉