由開關(guān)電源布局不當(dāng)而引起的噪聲如何避免?
發(fā)布時(shí)間:2019-02-26 責(zé)任編輯:wenwei
【導(dǎo)讀】“噪聲問題!”——這是每位電路板設(shè)計(jì)師都會(huì)聽到的四個(gè)字。為了解決噪聲問題,往往要花費(fèi)數(shù)小時(shí)的時(shí)間進(jìn)行實(shí)驗(yàn)室測(cè)試,以便揪出元兇,但最終卻發(fā)現(xiàn),噪聲是由開關(guān)電源的布局不當(dāng)而引起的。解決此類問題可能需要設(shè)計(jì)新的布局,導(dǎo)致產(chǎn)品延期和開發(fā)成本增加。
本文將提供有關(guān)印刷電路板(PCB)布局布線的指南,以幫助設(shè)計(jì)師避免此類噪聲問題。作為例子的開關(guān)調(diào)節(jié)器布局采用雙通道同步開關(guān)控制器 ADP1850,第一步是確定調(diào)節(jié)器的電流路徑。然后,電流路徑?jīng)Q定了器件在該低噪聲布局布線設(shè)計(jì)中的位置。
PCB布局布線指南
第一步:確定電流路徑
在開關(guān)轉(zhuǎn)換器設(shè)計(jì)中,高電流路徑和低電流路徑彼此非??拷?。交流(AC)路徑攜帶有尖峰和噪聲,高直流(DC)路徑會(huì)產(chǎn)生相當(dāng)大的壓降,低電流路徑往往對(duì)噪聲很敏感。適當(dāng)PCB布局布線的關(guān)鍵在于確定關(guān)鍵路徑,然后安排器件,并提供足夠的銅面積以免高電流破壞低電流。性能不佳的表現(xiàn)是接地反彈和噪聲注入IC及系統(tǒng)的其余部分。
圖1所示為一個(gè)同步降壓調(diào)節(jié)器設(shè)計(jì),它包括一個(gè)開關(guān)控制器和以下外部電源器件:高端開關(guān)、低端開關(guān)、電感、輸入電容、輸出電容和旁路電容。圖1中的箭頭表示高開關(guān)電流流向。必須小心放置這些電源器件,避免產(chǎn)生不良的寄生電容和電感,導(dǎo)致過大噪聲、過沖、響鈴振蕩和接地反彈。
圖1. 典型開關(guān)調(diào)節(jié)器(顯示交流和直流電流路徑)
諸如DH、DL、BST和SW之類的開關(guān)電流路徑離開控制器后需妥善安排,避免產(chǎn)生過大寄生電感。這些線路承載的高δI/δt交流開關(guān)脈沖電流可能達(dá)到3 A以上并持續(xù)數(shù)納秒。高電流環(huán)路必須很小,以盡可能降低輸出響鈴振蕩,并且避免拾取額外的噪聲。
低值、低幅度信號(hào)路徑,如補(bǔ)償和反饋器件等,對(duì)噪聲很敏感。應(yīng)讓這些路徑遠(yuǎn)離開關(guān)節(jié)點(diǎn)和電源器件,以免注入干擾噪聲。
第二步:布局物理規(guī)劃
PCB物理規(guī)劃(floor plan)非常重要,必須使電流環(huán)路面積最小,并且合理安排電源器件,使得電流順暢流動(dòng),避免尖角和窄小的路徑。這將有助于減小寄生電容和電感,從而消除接地反彈。
圖2所示為采用開關(guān)控制器ADP1850的雙路輸出降壓轉(zhuǎn)換器的PCB布局。請(qǐng)注意,電源器件的布局將電流環(huán)路面積和寄生電感降至最小。虛線表示高電流路徑。同步和異步控制器均可以使用這一物理規(guī)劃技術(shù)。在異步控制器設(shè)計(jì)中,肖特基二極管取代低端開關(guān)。
圖2. 采用ADP1850控制器的雙路輸出降壓轉(zhuǎn)換器的PCB布局
第三步:電源器件——MOSFET和電容(輸入、旁路和輸出)
頂部和底部電源開關(guān)處的電流波形是一個(gè)具有非常高δI/δt的脈沖。因此,連接各開關(guān)的路徑應(yīng)盡可能短,以盡量降低控制器拾取的噪聲和電感環(huán)路傳輸?shù)脑肼?。在PCB一側(cè)上使用一對(duì)DPAK或SO-8封裝的FET時(shí),最好沿相反方向旋轉(zhuǎn)這兩個(gè)FET,使得開關(guān)節(jié)點(diǎn)位于該對(duì)FET的一側(cè),并利用合適的陶瓷旁路電容將高端漏電流旁路到低端源。務(wù)必將旁路電容盡可能靠近MOSFET放置(參見圖2),以盡量減小穿過FET和電容的環(huán)路周圍的電感。
輸入旁路電容和輸入大電容的放置對(duì)于控制接地反彈至關(guān)重要。輸出濾波器電容的負(fù)端連接應(yīng)盡可能靠近低端 MOSFET的源,這有助于減小引起接地反彈的環(huán)路電感。圖2中的Cb1和Cb2是陶瓷旁路電容,這些電容的推薦值范圍是1 μF至22 μF。對(duì)于高電流應(yīng)用,應(yīng)額外并聯(lián)一個(gè)較大值的濾波器電容,如圖2的CIN所示。
散熱考慮和接地層
在重載條件下,功率MOSFET、電感和大電容的等效串聯(lián)電阻(ESR)會(huì)產(chǎn)生大量的熱。為了有效散熱,圖2的示例在這些電源器件下面放置了大面積的銅。
多層PCB的散熱效果好于2層PCB。為了提高散熱和導(dǎo)電性能,應(yīng)在標(biāo)準(zhǔn)1盎司銅層上使用2盎司厚度的銅。多個(gè) PGND層通過過孔連在一起也會(huì)有幫助。圖3顯示一個(gè)4層 PCB設(shè)計(jì)的頂層、第三層和第四層上均分布有PGND層。
圖3. 截面圖:連接PGND層以改善散熱
這種多接地層方法能夠隔離對(duì)噪聲敏感的信號(hào)。如圖2所 示,補(bǔ)償器件、軟啟動(dòng)電容、偏置輸入旁路電容和輸出反饋分壓器電阻的負(fù)端全都連接到AGND層。請(qǐng)勿直接將任何高電流或高δI/δt路徑連接到隔離AGND層。AGND是一個(gè)安靜的接地層,其中沒有大電流流過。
所有電源器件(如低端開關(guān)、旁路電容、輸入和輸出電容等)的負(fù)端連接到PGND層,該層承載高電流。
GND層內(nèi)的壓降可能相當(dāng)大,以至于影響輸出精度。通過一條寬走線將AGND層連接到輸出電容的負(fù)端(參見圖4),可以顯著改善輸出精度和負(fù)載調(diào)節(jié)。
圖4. AGND層到PGND層的連接
AGND層一路擴(kuò)展到輸出電容,AGND層和PGND層在輸出電容的負(fù)端連接到過孔。
圖2顯示了另一種連接AGND和PGND層的技術(shù),AGND層通過輸出大電容負(fù)端附近的過孔連接到PGND層。圖3顯示了PCB上某個(gè)位置的截面,AGND層和PGND層通過輸出大電容負(fù)端附近的過孔相連。
電流檢測(cè)路徑
為了避免干擾噪聲引起精度下降,電流模式開關(guān)調(diào)節(jié)器的電流檢測(cè)路徑布局必須妥當(dāng)。雙通道應(yīng)用尤其要更加重視,消除任何通道間串?dāng)_。
雙通道降壓控制器ADP1850將低端MOSFET的導(dǎo)通電阻RDS(ON)用作控制環(huán)路架構(gòu)的一部分。此架構(gòu)在SWx與 PGNDx引腳之間檢測(cè)流經(jīng)低端MOSFET的電流。一個(gè)通道中的地電流噪聲可能會(huì)耦合到相鄰?fù)ǖ乐?。因此,?wù)必使 SWx和PGNDx走線盡可能短,并將其放在靠近MOSFET的地方,以便精確檢測(cè)電流。到SWx和PGNDx節(jié)點(diǎn)的連接務(wù)必采用開爾文檢測(cè)技術(shù),如圖2和圖5所示。注意,相應(yīng)的 PGNDx走線連接到低端MOSFET的源。不要隨意將PGND 層連接到PGNDx引腳。
圖5. 兩個(gè)通道的接地技術(shù)
相比之下,對(duì)于ADP1829等雙通道電壓模式控制器,PGND1和PGND2引腳則是直接通過過孔連接到PGND層。
反饋和限流檢測(cè)路徑
反饋(FB)和限流(ILIM)引腳是低信號(hào)電平輸入,因此,它們對(duì)容性和感性噪聲干擾敏感。FB和ILIM走線應(yīng)避免靠近高δI/δt走線。注意不要讓走線形成環(huán)路,導(dǎo)致不良電感增加。在ILIM和PGND引腳之間增加一個(gè)小MLCC去耦電容 (如22 pF),有助于對(duì)噪聲進(jìn)行進(jìn)一步濾波。
開關(guān)節(jié)點(diǎn)
在開關(guān)調(diào)節(jié)器電路中,開關(guān)(SW)節(jié)點(diǎn)是噪聲最高的地方,因?yàn)樗休d著很大的交流和直流電壓/電流。此SW節(jié)點(diǎn)需要較大面積的銅來盡可能降低阻性壓降。將MOSFET和電感彼此靠近放在銅層上,可以使串聯(lián)電阻和電感最小。
對(duì)電磁干擾、開關(guān)節(jié)點(diǎn)噪聲和響鈴振蕩更敏感的應(yīng)用可以使用一個(gè)小緩沖器。緩沖器由電阻和電容串聯(lián)而成(參見圖 6中的RSNUB和CSNUB),放在SW節(jié)點(diǎn)與PGND層之間,可以降 低SW節(jié)點(diǎn)上的響鈴振蕩和電磁干擾。注意,增加緩沖器可能會(huì)使整體效率略微下降0.2%到0.4%。
圖6. 緩沖器和柵極電阻電阻
柵極驅(qū)動(dòng)器路徑
柵極驅(qū)動(dòng)走線(DH和DL)也要處理高δI/δt,往往會(huì)產(chǎn)生響鈴振蕩和過沖。這些走線應(yīng)盡可能短。最好直接布線,避免使用饋通過孔。如果必須使用過孔,則每條走線應(yīng)使用兩個(gè)過孔,以降低峰值電流密度和寄生電感。
在DH或DL引腳上串聯(lián)一個(gè)小電阻(約2 Ω至4 Ω)可以減慢柵極驅(qū)動(dòng),從而也能降低柵極噪聲和過沖。另外,BST與SW 引腳之間也可以連接一個(gè)電阻(參見圖6)。在布局期間用0 Ω柵極電阻保留空間,可以提高日后進(jìn)行評(píng)估的靈活性。增加的柵極電阻會(huì)延長(zhǎng)柵極電荷上升和下降時(shí)間,導(dǎo)致 MOSFET的開關(guān)功率損耗提高。
總結(jié)
了解電流路徑、其敏感性以及適當(dāng)?shù)钠骷胖?,是消?PCB布局設(shè)計(jì)噪聲問題的關(guān)鍵。ADI公司的所有電源器件評(píng)估板都采用上述布局布線指導(dǎo)原則來實(shí)現(xiàn)最佳性能。評(píng)估板文件UG-204和UG-205詳細(xì)說明了ADP1850相關(guān)的布局布線情況。
注意,所有開關(guān)電源都具有相同的元件和相似的電流路徑敏感性。因此,以針對(duì)電流模式降壓調(diào)節(jié)器的 ADP1850為 例說明的指導(dǎo)原則同樣適用于電壓模式和/或升壓開關(guān)調(diào)節(jié)器的布局布線。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器