適合空間受限應(yīng)用的最高功率密度、多軌電源解決方案
發(fā)布時(shí)間:2020-04-22 來源:Maurice O''''Brien 責(zé)任編輯:wenwei
【導(dǎo)讀】隨著通信、醫(yī)療和工業(yè)設(shè)備的總體尺寸不斷縮小,電源管理設(shè)計(jì)變得越來越重要。本文討論高度集成的全新電源管理解決方案的應(yīng)用,這些新器件為RF系統(tǒng)、FPGA和處理器供電所帶來的優(yōu)勢,以及有助于設(shè)計(jì)人員快速實(shí)現(xiàn)新設(shè)計(jì)的設(shè)計(jì)工具。
在通信基礎(chǔ)設(shè)施中,毫微微蜂窩和微微蜂窩的興起推動基站向更小型化方向發(fā)展,這對數(shù)字基帶、存儲器、RF收發(fā)器和功率放大器的供電提出了復(fù)雜要求,必須在最小的面積中提供最高的功率密度,如圖1所示。典型的小蜂窩系統(tǒng)需要密度非常高的電源,它能以快速瞬變響應(yīng)輸送大電流以便為數(shù)字基帶供電,同時(shí)利用低噪聲、低壓差調(diào)節(jié)器(LDO)為AD9361RF捷變收發(fā)™、溫度補(bǔ)償晶體振蕩器(TCXO)和其他噪聲關(guān)鍵電源軌供電。將開關(guān)穩(wěn)壓器的開關(guān)頻率設(shè)置到關(guān)鍵RF頻段以外可降低噪聲,并且同步開關(guān)穩(wěn)壓器可確保拍頻不影響RF性能。降低數(shù)字基帶的內(nèi)核電壓(VCORE)可將低功耗模式的功耗降至最低,電源時(shí)序控制則可確保數(shù)字基帶在RF收發(fā)器使能之前上電并運(yùn)行。數(shù)字基帶與電源管理之間的I2C接口允許改變降壓調(diào)節(jié)器的輸出電壓。為提高可靠性,電源管理系統(tǒng)可以監(jiān)控其自身的輸入電壓和芯片溫度,向基帶處理器報(bào)告任何故障。
圖1. 小型基站需要多種電源
同樣,醫(yī)療和儀器設(shè)備(如便攜式超聲設(shè)備和手持式儀器)的趨勢也是尺寸越來越小,要求在更小的面積上以更有效的方式為FPGA、處理器和存儲器供電,如圖2所示。典型的FPGA和存儲器設(shè)計(jì)需要密度非常高的電源,它能以快速瞬變響應(yīng)輸送大電流以便為內(nèi)核和I/O電源軌供電,同時(shí)通過低噪聲軌為鎖相環(huán)(PLL)等片內(nèi)模擬電路供電。電源時(shí)序至關(guān)重要,應(yīng)確保FPGA在存儲器使能之前上電并運(yùn)行。帶精密使能輸入和專用電源良好輸出的穩(wěn)壓器支持電源時(shí)序控制和故障監(jiān)控。電源設(shè)計(jì)師通常希望將同一電源IC用在不同應(yīng)用中,因此,必須能夠改變電流限值。這種設(shè)計(jì)重用可大幅縮短產(chǎn)品上市時(shí)間——任何新產(chǎn)品開發(fā)流程中的關(guān)鍵要素之一。
圖2. 為基于FPGA的系統(tǒng)供電
考慮具有1路12 V輸入和5路輸出的FPGA的多軌電源管理常見設(shè)計(jì)規(guī)格:
● 內(nèi)核電軌:1.2 V (4 A)
● 輔助電軌:1.8 V (4 A)
● I/O電軌:3.3 V (1.2 A)
● DDR存儲器電軌:1.5 V (1.2 A)
● 時(shí)鐘電軌:1.0 V (200 mA)
典型的分立方案如圖3a所示,4個(gè)開關(guān)穩(wěn)壓器連接到12 V輸入軌。一個(gè)開關(guān)穩(wěn)壓器的輸出預(yù)調(diào)節(jié)LDO以降低功耗。另一種方法如圖3b所示,使用一個(gè)穩(wěn)壓器將12 V輸入降壓至5 V中間軌,然后再經(jīng)調(diào)節(jié)以產(chǎn)生所需的各個(gè)電壓。該方案的成本較低,但由于采用兩級電源轉(zhuǎn)換,效率也較低。在以上兩種方案中,各穩(wěn)壓器都必須獨(dú)立使能,因此,可能需要一個(gè)專用電源時(shí)序控制器來控制電源的時(shí)序。噪聲可能也是一個(gè)問題,除非所有開關(guān)穩(wěn)壓器都能同步以降低拍頻。
圖3. (a) 分立穩(wěn)壓器設(shè)計(jì),(b) 備選分立穩(wěn)壓器設(shè)計(jì)
集成解決方案實(shí)現(xiàn)高效率、小尺寸
將多個(gè)降壓調(diào)節(jié)器和LDO集成到單個(gè)封裝中,可顯著縮小電源管理設(shè)計(jì)的總體尺寸。此外,與傳統(tǒng)分立方案相比,智能型集成解決方案具有許多優(yōu)勢。減少分立元件數(shù)目可大幅降低設(shè)計(jì)的成本、復(fù)雜度和制造成本。集成電源管理單元(PMU)ADP5050 和 ADP5052可在單個(gè)IC中實(shí)現(xiàn)所有這些電壓和功能,所用PCB面積和元件大幅減少。
為了最大程度地提高效率,去除預(yù)調(diào)節(jié)器級,各降壓調(diào)節(jié)器均直接從12 V電壓供電(類似于圖3a)。降壓調(diào)節(jié)器1和2具有可編程電流限值(4 A、2.5 A或1.2 A),因此電源設(shè)計(jì)師可以快速輕松地為新設(shè)計(jì)改變電流,大大縮短開發(fā)時(shí)間。LDO可從1.7 V至5.5 V電源供電。在本例中,其中一個(gè)降壓調(diào)節(jié)器的1.8 V輸出為LDO供電,提供低噪聲1 V電源軌用于噪聲敏感的模擬電路。
開關(guān)頻率fSW由電阻RRT設(shè)置,范圍是250 kHz到1.4 MHz。靈活的開關(guān)頻率范圍使得電源設(shè)計(jì)師可以優(yōu)化設(shè)計(jì),降低頻率以實(shí)現(xiàn)最高效率,或者提高頻率以實(shí)現(xiàn)最小的總體尺寸。圖4顯示了fSW 與 RRT之間的關(guān)系。RRT的值可通過下式計(jì)算:
RRT = (14822/fSW)1.081,R的單位為kΩ,f的單位為kHz。
圖4. 開關(guān)頻率與RRT的關(guān)系
某些設(shè)計(jì)中,兩者都很重要:對較高電流軌使用較低的開關(guān)頻率以提供最高電源效率,對較低電流軌使用較高的開關(guān)頻率以縮小電感尺寸和實(shí)現(xiàn)最小的PCB面積。ADP5050的主開關(guān)頻率具有二分頻選項(xiàng),能夠以兩種頻率工作,如圖5所示。降壓調(diào)節(jié)器1和3的開關(guān)頻率可通過I2C端口設(shè)置為主開關(guān)頻率的一半。
圖5. ADP5050對高電流軌使用低開關(guān)頻率以提高效率,對低電流軌使用高開關(guān)頻率以縮小電感尺寸
電源時(shí)序控制
如圖6所示,ADP5050和ADP5052通過四個(gè)特性來簡化使用FPGA和處理器的應(yīng)用的電源時(shí)序控制:精密使能輸入、可編程軟啟動、電源良好輸出和有源輸出放電開關(guān)。
精密使能輸入: 每個(gè)穩(wěn)壓器,包括LDO在內(nèi),都有一個(gè)帶0.8 V精密基準(zhǔn)電壓的使能輸入(圖6-1)。當(dāng)使能輸入的電壓大于0.8 V時(shí),穩(wěn)壓器使能;當(dāng)該電壓小于0.725 V時(shí),穩(wěn)壓器禁用。內(nèi)部1 MΩ下拉電阻可防止該引腳懸空時(shí)發(fā)生錯(cuò)誤。利用精密使能閾值電壓,很容易控制器件內(nèi)的電源時(shí)序,使用外部電源時(shí)也一樣。例如,降壓調(diào)節(jié)器1設(shè)置為5 V時(shí),可以利用一個(gè)電阻分壓器來設(shè)置精確的4.0 V跳變點(diǎn)以使能降壓調(diào)節(jié)器2,依此類推為所有輸出設(shè)置精確的上電時(shí)序。
可編程軟啟動: 軟啟動電路以可控方式緩慢提高輸出電壓,從而限制浪涌電流。軟啟動引腳連接到 VREG時(shí),軟啟動時(shí)間設(shè)置為2 ms;在軟啟動引腳與 VREG和地之間連接一個(gè)電阻分壓器時(shí),軟啟動時(shí)間可提高至8 ms(圖6-2)。為了支持特定啟動序列或具有大輸出電容的值,可能需要這種配置。軟啟動的可配置能力和靈活性使大型復(fù)雜的FPGA以及處理器能以安全可控的方式上電。
1. 精密使能閾值: 高于0.8V使能穩(wěn)壓器,低于0.72V(遲滯)則關(guān)斷穩(wěn)壓器。
2. 可編程軟啟動: 各通道上的不同軟啟動可編程為2ms、4ms、8ms。
3. PWRGD輸出;CH1到CH4的所需PWRGDx可通過工廠熔絲或I2C配置。
4. 有源輸出放電開關(guān)可以接通輸出放電開關(guān)以縮短輸出電容的放電周期。
圖6. ADP5050和ADP5052簡化電源時(shí)序控制
電源良好輸出: 當(dāng)所選降壓調(diào)節(jié)器正常工作時(shí),開漏電源良好輸出(PWRGD)變?yōu)楦唠娖剑▓D6-3)。電源良好引腳可以將電源的狀況告知主機(jī)系統(tǒng)。默認(rèn)情況下,PWRGD監(jiān)控降壓調(diào)節(jié)器1上的輸出電壓,但也可以定制其它通道來控制PWRGD引腳。各通道的狀態(tài)(PWRGx位)可通過ADP5050上的I2C接口回讀。PWRGx位的邏輯高電平表示調(diào)節(jié)輸出電壓高于標(biāo)稱輸出的90.5%。當(dāng)調(diào)節(jié)輸出電壓降至其標(biāo)稱輸出的87.2%以下并持續(xù)50 μs以上時(shí),PWRGx位設(shè)為邏輯低電平。PWRGD輸出是內(nèi)部未屏蔽PWRGx信號的邏輯和。內(nèi)部PWRGx信號必須為高電平且持續(xù)至少1 ms,PWRGD引腳才能變?yōu)楦唠娖?;如果任意PWRGx信號發(fā)生故障,則PWRGD引腳毫無延遲地變?yōu)榈碗娖???刂芇WRGD的通道(通道1至通道4)由工廠熔絲指定,或通過I2C接口設(shè)置相應(yīng)位來指定。
有源輸出放電開關(guān): 每個(gè)降壓調(diào)節(jié)器均集成一個(gè)放電開關(guān),它連接在開關(guān)節(jié)點(diǎn)與地之間(圖6-4)。當(dāng)其相關(guān)調(diào)節(jié)器禁用時(shí),開關(guān)接通,有助于使輸出電容快速放電。對于通道1至通道4,放電開關(guān)的典型電阻為250 Ω。當(dāng)調(diào)節(jié)器禁用時(shí),即使有大容性負(fù)載,有源放電開關(guān)也會將輸出拉至地。這樣就能顯著提高系統(tǒng)的穩(wěn)定性,尤其是在周期供電時(shí)。
圖7所示為典型的上電/關(guān)斷時(shí)序。
圖7. 典型的上電/關(guān)斷時(shí)序
I2C 接口
The I2C 接口實(shí)現(xiàn)了對兩個(gè)降壓調(diào)節(jié)器輸出(通道1和通道4)的高級監(jiān)控和基本動態(tài)電壓調(diào)整。
輸入電壓監(jiān)控: 可以監(jiān)控輸入電壓是否發(fā)生欠壓等故障。例如,將12 V電壓施加于輸入,I2C接口配置為:如果輸入電壓低于10.2 V,則觸發(fā)報(bào)警。專用引腳(nINT)上的信號告知系統(tǒng)處理器問題已出現(xiàn),并關(guān)斷系統(tǒng)以便采取糾正措施。具備監(jiān)控輸入電壓的能力可提高系統(tǒng)可靠性。圖8顯示了可以設(shè)置哪些值來監(jiān)控ADP5050的輸入電壓。
圖8. 輸入欠壓檢測
結(jié)溫監(jiān)控:可以監(jiān)控結(jié)溫以判斷是否發(fā)生過溫等故障。如果結(jié)溫高于預(yù)設(shè)值(105°C、115°C或125°C),nINT上就會產(chǎn)生報(bào)警信號。與熱關(guān)斷不同的是,此功能發(fā)送警告信號而不關(guān)斷器件。具備監(jiān)控結(jié)溫并提醒系統(tǒng)處理器注意避免發(fā)生系統(tǒng)故障的能力可提高系統(tǒng)可靠性,如圖9所示。
圖9. 結(jié)溫監(jiān)控
有源輸出放電開關(guān): 每個(gè)降壓調(diào)節(jié)器均集成一個(gè)放電開關(guān),它連接在開關(guān)節(jié)點(diǎn)與地之間(圖6-4)。當(dāng)其相關(guān)調(diào)節(jié)器禁用時(shí),開關(guān)接通,有助于使輸出電容快速放電。對于通道1至通道4,放電開關(guān)的典型電阻為250 Ω。當(dāng)調(diào)節(jié)器禁用時(shí),即使有大容性負(fù)載,有源放電開關(guān)也會將輸出拉至地。這樣就能顯著提高系統(tǒng)的穩(wěn)定性,尤其是在周期供電時(shí)。
動態(tài)電壓調(diào)整:動態(tài)電壓調(diào)整通過動態(tài)降低低功耗模式下通道1和通道4的電源電壓來降低系統(tǒng)功耗,它也可以根據(jù)系統(tǒng)配置和負(fù)載動態(tài)改變輸出電壓。此外,所有四個(gè)降壓調(diào)節(jié)器的輸出電壓均可通過 I2C 接口設(shè)置,如圖10所示。
圖10. ADP5050輸出電壓選項(xiàng)
低噪聲特性
多個(gè)特性可降低電源產(chǎn)生的系統(tǒng)噪聲。
寬電阻可編程開關(guān)頻率范圍:RT引腳上的電阻可在250 kHz至1.4 MHz的范圍內(nèi)設(shè)置開關(guān)頻率。電源設(shè)計(jì)師可靈活地設(shè)置開關(guān)頻率以避免系統(tǒng)噪聲頻段。
降壓調(diào)節(jié)器相移降壓調(diào)節(jié)器的相移可通過I2C接口設(shè)置。默認(rèn)情況下,通道1和通道2之間以及通道3和通道4之間的相移為180°,如圖11所示。反相操作的優(yōu)勢是輸入紋波電流和電源接地噪聲更低。
圖11. ADP5050/ADP5052的降壓調(diào)節(jié)器相移
圖12. 降壓調(diào)節(jié)器的相移可通過I2C接口配置
時(shí)鐘同步:開關(guān)頻率可通過SYNC/MODE引腳同步至250 kHz到1.4 MHz的外部時(shí)鐘。該能力對于RF和噪聲敏感應(yīng)用很重要。檢測到外部時(shí)鐘時(shí),開關(guān)頻率平滑過渡至其頻率。當(dāng)外部時(shí)鐘停止時(shí),器件切換到內(nèi)部時(shí)鐘并繼續(xù)正常工作。與外部時(shí)鐘同步可使系統(tǒng)設(shè)計(jì)師遠(yuǎn)離臨界噪聲頻段,并降低系統(tǒng)中多個(gè)器件產(chǎn)生的噪聲。
為成功同步,必須將內(nèi)部開關(guān)頻率設(shè)置為接近于外部時(shí)鐘值的值,頻率差建議小于±15%。
通過工廠熔絲或I2C接口,可將SYNC/MODE引腳配置為同步時(shí)鐘輸出。當(dāng)頻率等于內(nèi)部開關(guān)頻率時(shí),SYNC/MODE引腳產(chǎn)生占空比為50%的正時(shí)鐘脈沖。產(chǎn)生的同步時(shí)鐘與通道1開關(guān)節(jié)點(diǎn)之間有一個(gè)較短的延遲時(shí)間(約為 tSW)的15%)。
圖13顯示了兩個(gè)配置為頻率同步模式的器件:一個(gè)器件配置為時(shí)鐘輸出以同步另一個(gè)器件。應(yīng)當(dāng)使用100 kΩ上拉電阻,以防SYNC/MODE引腳懸空時(shí)發(fā)生邏輯錯(cuò)誤。
圖13. RF應(yīng)用顯示兩個(gè)器件同步以降低電源噪聲
兩個(gè)器件均同步至同一時(shí)鐘,因此,第一個(gè)器件的通道1與第二個(gè)器件的通道1之間的相移為0°,如圖14所示。
圖14. 兩個(gè)以同步模式工作的ADP5050器件的波形
ADIsimPower 設(shè)計(jì)工具
ADIsimPower™現(xiàn)在支持多通道高壓PMU ADP5050/ADP5052,這些器件從最高15 V的輸入為4/5的通道供電,每通道的負(fù)載電流最高可達(dá)4 A。憑借該設(shè)計(jì)工具,用戶可以級聯(lián)通道,將高電流通道并聯(lián)放置以形成8 A電源軌,考慮各通道的熱分布,從而優(yōu)化設(shè)計(jì)。利用高級特性,用戶可以獨(dú)立指定各通道的紋波和瞬變性能、開關(guān)頻率、支持半主頻率的通道。
ADIsimPower允許用戶在圖15所示的軟件界面上快速輕松地輸入設(shè)計(jì)要求。
圖15. ADIsimPower軟件界面
軟件會智能選擇器件并生成完整的物料清單。評估板可以直接在該工具內(nèi)申請。設(shè)計(jì)工具支持對各通道進(jìn)行復(fù)雜的控制,如圖16所示。
圖16. (a) 可以指定各軌的紋波、瞬變和響應(yīng)。
(b) 使用精密使能的高級時(shí)序控制要求。
利用ADIsimPower,電源設(shè)計(jì)師可以快速獲得準(zhǔn)確、經(jīng)過測試的可靠性能數(shù)據(jù),如圖17所示。
圖17. ADIsimPower仿真輸出
隨后便可在評估板上組裝設(shè)計(jì),如圖18所示。
圖18. 使用ADP5050/ADP5052的電源電路
ADP5050/ADP5052/ADP5051/ADP5053 技術(shù)規(guī)格
圖19. ADP5050/ADP5051/ADP5052/ADP5053:四通道降壓開關(guān)調(diào)節(jié)器,帶LDO或POR/WDI,采用LFCSP封裝
結(jié)論
高度集成的全新PMU可實(shí)現(xiàn)具有高電源效率、高可靠性和超小尺寸的復(fù)雜電源管理解決方案。全新設(shè)計(jì)工具與靈活的集成電路相結(jié)合,則可縮短這些復(fù)雜電源產(chǎn)品的上市時(shí)間。ADP505x系列是ADI公司高度集成的多路輸出穩(wěn)壓器的最新產(chǎn)品組合,該系列使單個(gè)IC能快速輕松地用于許多不同的應(yīng)用,從而縮短電源設(shè)計(jì)時(shí)間。要討論這些器件的技術(shù)方面,請?jiān)L問EngineerZone中文技術(shù)論壇。
推薦閱讀:
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動化多通道測試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 基于 SiC 的三相電機(jī)驅(qū)動開發(fā)和驗(yàn)證套件
- 自主移動機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級,SSD如何扮演關(guān)鍵角色
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 大電流、高性能降壓-升壓穩(wěn)壓器
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
MediaTek
MEMS
MEMS傳感器
MEMS麥克風(fēng)
MEMS振蕩器
MHL
Micrel
Microchip
Micron
Mic連接器
Mi-Fi
MIPS
MLCC
MMC連接器
MOSFET
Mouser
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC