圖1:電容隔離
EV充電器未來(lái)趨勢(shì):更快、更安全、更高效
發(fā)布時(shí)間:2020-09-17 責(zé)任編輯:lina
【導(dǎo)讀】隨著電動(dòng)汽車(EV)數(shù)量的增加,對(duì)創(chuàng)建更加節(jié)能的充電基礎(chǔ)設(shè)施系統(tǒng)的需求也在日益增長(zhǎng),如此便可更快地為車輛充電。與先前的電動(dòng)汽車相比,新型電動(dòng)汽車具有更高的行駛里程和更大的電池容量,因此需要開(kāi)發(fā)快速直流充電解決方案以滿足快速充電要求。
隨著電動(dòng)汽車(EV)數(shù)量的增加,對(duì)創(chuàng)建更加節(jié)能的充電基礎(chǔ)設(shè)施系統(tǒng)的需求也在日益增長(zhǎng),如此便可更快地為車輛充電。與先前的電動(dòng)汽車相比,新型電動(dòng)汽車具有更高的行駛里程和更大的電池容量,因此需要開(kāi)發(fā)快速直流充電解決方案以滿足快速充電要求。150 kW或200 kW的充電站約需要30分鐘才能將電動(dòng)汽車充電至80%,行駛大約250 km。根據(jù)聯(lián)合充電系統(tǒng)和Charge de Move標(biāo)準(zhǔn),快速DC充電站可提供高達(dá)400 kW的功率。
今天,我們將研究驅(qū)動(dòng)更快、更安全、更高效的充電器的半導(dǎo)體技術(shù):
• 高壓半導(dǎo)體開(kāi)關(guān)(絕緣柵雙極晶體管[IGBT]和碳化硅[SiC])正在驅(qū)動(dòng)系統(tǒng)中的總線電壓(800 V或1,000 V)。隨著系統(tǒng)電壓的升高,對(duì)隔離技術(shù)的要求也不斷提高,以確保整體安全性和可靠性。
• 隨著功率轉(zhuǎn)換器能夠?qū)崿F(xiàn)更快的開(kāi)關(guān)頻率(幾百赫茲至幾兆赫茲),在這些高頻下工作會(huì)減小電路中使用的磁性組件和其他無(wú)源器件的尺寸,進(jìn)而降低系統(tǒng)成本并提高總體功率密度。因此,需要高帶寬電流和電壓感測(cè)來(lái)精確地控制和保護(hù)數(shù)字功率級(jí)。
• 更高的效率要求使用多級(jí)復(fù)雜功率級(jí),反之又需要高壓隔離柵極驅(qū)動(dòng)器來(lái)有效切換這些功率級(jí)并減少總體開(kāi)關(guān)損耗,同時(shí)還包括增強(qiáng)的隔離和短路保護(hù)功能。
讓我們更深入地研究這些技術(shù)推動(dòng)因素:
隔離技術(shù)
安全合規(guī)性在EV充電器中至關(guān)重要,因?yàn)樗鼈冎苯优c公用電網(wǎng)連接。為了確保操作員安全、保護(hù)處理器免受高壓電源轉(zhuǎn)換器系統(tǒng)的損壞以及防止接地回路和不同通信子系統(tǒng)之間的電位差,隔離是必不可少的。具有次級(jí)側(cè)控制架構(gòu)的功率控制器不僅需在功率級(jí)(通過(guò)隔離變壓器)進(jìn)行隔離,還需在控制器驅(qū)動(dòng)電路和相關(guān)的信號(hào)調(diào)節(jié)電路中進(jìn)行隔離。
由電源轉(zhuǎn)換器的開(kāi)關(guān)操作引起的噪聲干擾會(huì)對(duì)系統(tǒng)性能產(chǎn)生負(fù)面影響。例如,當(dāng)電源轉(zhuǎn)換器開(kāi)關(guān)的瞬變發(fā)生時(shí),高壓擺率會(huì)在信號(hào)路徑上引起瞬變電壓,并產(chǎn)生共模電壓瞬變,這需要具有高共模瞬變抗擾度(CMTI)的隔離器來(lái)維持信號(hào)完整性。
電動(dòng)汽車充電站中直流母線電壓的增加也顯示出加強(qiáng)隔離對(duì)于操作人員安全性和可靠性的重要性。根據(jù)工作電壓,可分為三種基本隔離類別:功能隔離、基本隔離和加強(qiáng)隔離。功能隔離(也稱為工作隔離)不能保護(hù)或隔離電擊,但產(chǎn)品必須具備此功能才能運(yùn)行?;靖綦x是可提供基本防震保護(hù)的單層絕緣。增強(qiáng)隔離是一種可提供相當(dāng)于雙重隔離電擊保護(hù)的單隔離系統(tǒng)。
半導(dǎo)體可使用多種隔離技術(shù):
• 光學(xué)隔離使用LED光線在透明的非導(dǎo)電絕緣層上傳輸,其主要優(yōu)點(diǎn)是具有高電氣隔離值和低成本。但光隔離還具有較長(zhǎng)的傳播時(shí)間、較低的抗噪性、較高的靜態(tài)電流以及隨溫度和老化而迅速劣化的絕緣性能。這些限制將光隔離技術(shù)限制在對(duì)成本敏感的低速電源轉(zhuǎn)換器上。
• 磁隔離通過(guò)變壓器線圈設(shè)計(jì)使用耦合電感傳遞信號(hào),并在高頻下提供高隔離度。與光學(xué)技術(shù)相比,其具有更佳的傳播時(shí)間,但也具有較高電磁噪聲的問(wèn)題、較低的抗噪性以及隨溫度和濕度而導(dǎo)致的絕緣劣化。
• 電容隔離使用變化的電場(chǎng)通過(guò)電容傳輸能量。該技術(shù)的優(yōu)勢(shì)在于它能夠高速運(yùn)行,且其封裝相對(duì)較小。它具有較高的可靠性,在整個(gè)溫度范圍內(nèi)具有最佳的絕緣穩(wěn)定性,以及較高的光耦的共模抑制比和低輻射。
圖1所示為電容隔離。德州儀器在其隔離式柵極驅(qū)動(dòng)器、放大器和數(shù)字隔離器中使用了電容隔離。
圖1:電容隔離
高帶寬電流和電壓感測(cè)
EV充電器應(yīng)用將電流和電壓感測(cè)用于三個(gè)主要功能:監(jiān)視、保護(hù)和控制。在電動(dòng)汽車充電器中,來(lái)自電網(wǎng)的能量轉(zhuǎn)換通常分為兩級(jí)。功率因數(shù)校正級(jí)將電網(wǎng)電壓轉(zhuǎn)換為穩(wěn)定的直流母線電壓。然后,DC/DC級(jí)將DC電壓轉(zhuǎn)換為適合EV電池組的電壓。
圖2所示為EV充電站的框圖,其中電流檢測(cè)位置標(biāo)記為A,電壓檢測(cè)位置標(biāo)記為V。
圖2:電動(dòng)汽車充電站框圖
功率級(jí)中SiC和氮化鎵(GaN)開(kāi)關(guān)的使用日益增加,提高了工作頻率(數(shù)百千赫茲至幾兆赫茲),同時(shí)提供了更高的效率和更高的功率密度。這些功率級(jí)需要精確感測(cè)快速開(kāi)關(guān)電流確??刂骗h(huán)路可靠運(yùn)行,從而確保轉(zhuǎn)換器穩(wěn)定運(yùn)行。快速響應(yīng)時(shí)間、整個(gè)溫度范圍內(nèi)的線性運(yùn)行以及精確的電流和電壓感測(cè)對(duì)于所有具有高壓級(jí)的高功率系統(tǒng)都至關(guān)重要。
電流檢測(cè)的半導(dǎo)體技術(shù)可大致分為直接和間接感測(cè)方法。直接感測(cè)方法包括通過(guò)采用隔離放大器或隔離Σ-Δ轉(zhuǎn)換器進(jìn)行基于分流電阻器的檢測(cè)。分流電阻上的壓降通常為50 mV或250 mV(以將電流電阻損耗降至最低),構(gòu)成該級(jí)的輸入。
對(duì)于隔離放大器,將縮放的低壓信號(hào)發(fā)送到外部控制器,以在保持電氣隔離的同時(shí)對(duì)高電壓軌上的電流進(jìn)行精確測(cè)量。
隔離式Σ-Δ轉(zhuǎn)換器將分流器兩端的壓降直接調(diào)制為數(shù)字比特流,當(dāng)直接與微控制器的Σ-Δ接口連接時(shí)可實(shí)現(xiàn)更高的帶寬。更高的信號(hào)帶寬可確保快速、精確的電流測(cè)量以及開(kāi)關(guān)信號(hào)的精確表示,從而控制轉(zhuǎn)換器的功率級(jí)。
與基于具有基本一次性校準(zhǔn)的霍爾效應(yīng)解決方案相比,采用基于分流器的傳感是更優(yōu)的,該方法可在溫度范圍內(nèi)實(shí)現(xiàn)更高的直流精度。由于基于分流器的解決方案對(duì)外部磁場(chǎng)不敏感,因此其精度更高,尤其是存在低電流時(shí)?;诜至髌鞯慕鉀Q方案在整個(gè)電壓范圍內(nèi)都呈線性,尤其是在過(guò)零和磁芯飽和區(qū)域附近。與霍爾效應(yīng)傳感器相比,該解決方案還提供了高達(dá)5 kV的增強(qiáng)隔離,并減小了外形尺寸。
間接方法涉及感測(cè)載流導(dǎo)體周圍的磁場(chǎng)。例如,霍爾效應(yīng)傳感器通過(guò)測(cè)量導(dǎo)體周圍產(chǎn)生的磁場(chǎng)來(lái)間接檢測(cè)流過(guò)導(dǎo)體的電流。開(kāi)環(huán)霍爾效應(yīng)傳感器的帶寬高達(dá)1 MHz。閉環(huán)傳感器的帶寬為350 kHz,與開(kāi)環(huán)霍爾效應(yīng)傳感器相比具有更佳的性能,但成本也更高。
鑒于其出色的帶寬和響應(yīng)時(shí)間,開(kāi)環(huán)和閉環(huán)霍爾效應(yīng)傳感器可在短路條件下(尤其是在高頻下進(jìn)行切換時(shí))為分流解決方案中的SiC開(kāi)關(guān)提供更佳的保護(hù)。SiC開(kāi)關(guān)的短路耐受時(shí)間通常為1-3 µs,且需要快速檢測(cè)以防止短路。與基于霍爾效應(yīng)的解決方案相比,串聯(lián)分流器兩端的壓降會(huì)導(dǎo)致散熱和功率損耗,尤其是當(dāng)測(cè)量的電流增加時(shí)。
隔離式柵極驅(qū)動(dòng)器
高速柵極驅(qū)動(dòng)器對(duì)于構(gòu)建具有高效率、高功率密度且可靠和穩(wěn)固的電源模塊至關(guān)重要。柵極驅(qū)動(dòng)器在控制器上的脈寬調(diào)制器和大功率開(kāi)關(guān)之間進(jìn)行連接?;诖蠊β蔛iC/IGBT的功率模塊要求柵極驅(qū)動(dòng)器具有以極高的速度產(chǎn)生和吸收峰值電流的能力,以最大程度地縮短了導(dǎo)通和關(guān)斷的過(guò)渡時(shí)間,從而將開(kāi)關(guān)損耗降至最低。柵極驅(qū)動(dòng)器必須:
• 靈活使用具有寬操作電壓和不同類型電源開(kāi)關(guān)的同一驅(qū)動(dòng)器。
• 可在嘈雜的環(huán)境和極端溫度條件下運(yùn)行。
• 具有最小的導(dǎo)通傳播延遲,可實(shí)現(xiàn)場(chǎng)效應(yīng)晶體管(FET)的更快切換,使體二極管的導(dǎo)通時(shí)間最小化,從而提高效率。
• 具有良好的延遲匹配,以確保以最小的導(dǎo)通延遲差驅(qū)動(dòng)并聯(lián)的金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管(MOSFET)。
對(duì)于高電壓應(yīng)用,增強(qiáng)型隔離式柵極驅(qū)動(dòng)器可提高系統(tǒng)抵御電涌(CMTI)、由電勢(shì)差引起的泄漏電流以及其他可能損壞系統(tǒng)異常事件的能力。
基于控制器的位置,控制器和驅(qū)動(dòng)器之間可能需要隔離。傳統(tǒng)的隔離方法是使用非隔離柵極驅(qū)動(dòng)器和分立的變壓器實(shí)現(xiàn)隔離。集成式隔離柵極驅(qū)動(dòng)器的傳播延遲與分立式變壓器解決方案相似或更佳,而且占用的面積減少了50%。此外,集成時(shí)的隔離柵極驅(qū)動(dòng)器以提供大于100 V/ns的CMTI,該數(shù)字明顯高于分立解決方案所能達(dá)到的數(shù)字。CMTI是決定柵極驅(qū)動(dòng)器魯棒性的關(guān)鍵參數(shù)。
為了使轉(zhuǎn)換器可靠運(yùn)行,需要柵極驅(qū)動(dòng)器中的保護(hù)功能。由于具有提高功率密度和效率的優(yōu)點(diǎn),SiC和GaN已成為各類應(yīng)用中硅IGBT的潛在替代品。SiC MOSFET具有更嚴(yán)格的短路保護(hù)要求;與IGBT約10 µs相比,短路耐受時(shí)間為1-3 µs。集成到柵極驅(qū)動(dòng)器的DESAT管腳對(duì)于在檢測(cè)短路時(shí)提供快速響應(yīng)至關(guān)重要。集成的欠壓鎖定和有源Miller鉗位對(duì)于防止半橋應(yīng)用中FET的誤導(dǎo)通也至關(guān)重要。
對(duì)具有自然對(duì)流冷卻功能的便攜式直流快速充電器(可輕松拿起并存放在EV行李箱的背面)的需求正推動(dòng)設(shè)計(jì)具有最新功率密度和效率的EV充電器的發(fā)展。具有集成柵極驅(qū)動(dòng)器的基于GaN的開(kāi)關(guān)可提供導(dǎo)通電阻、快速開(kāi)關(guān)和低輸出電容,從而有助于功率密度提高多達(dá)三分之一的EV充電器的設(shè)計(jì)。EV充電器中常用的諧振架構(gòu)也將從零電壓和零電流開(kāi)關(guān)中受益,這些開(kāi)關(guān)可減輕開(kāi)關(guān)損耗并提高整體系統(tǒng)效率。
結(jié)論
在電動(dòng)汽車充電站中使用的電源轉(zhuǎn)換器中,高功率密度、可靠性和魯棒性變得越來(lái)越重要。隨著功率和電壓水平的提高,保護(hù)人員和設(shè)備免受危險(xiǎn)操作條件的影響至關(guān)重要。
目標(biāo)于高功率密度和高效率充電器的制造商將采用基于IGBT、SiC和GaN的功率轉(zhuǎn)換器,其開(kāi)關(guān)頻率從幾百赫茲到幾兆赫茲不等。高頻電流和電壓傳感器對(duì)于這些平臺(tái)的開(kāi)發(fā)至關(guān)重要。
智能柵極驅(qū)動(dòng)器技術(shù)將實(shí)現(xiàn)必要的高電壓電平、快速開(kāi)關(guān)速度以及快速保護(hù)的需求。鑒于過(guò)去十年來(lái)半導(dǎo)體技術(shù)的飛躍發(fā)展,在短暫的休息時(shí)間里將EV充滿電將很快實(shí)現(xiàn)。
Jayanth Rangaraju目前擔(dān)任德州儀器(TI)的系統(tǒng)經(jīng)理,致力于可再生能源。在此職位,他的團(tuán)隊(duì)負(fù)責(zé)利用TI的產(chǎn)品組合來(lái)利用系統(tǒng)解決方案和專業(yè)知識(shí)來(lái)解決工程問(wèn)題。在德州儀器的13年中,Jayanth擔(dān)任過(guò)各種職務(wù),包括設(shè)計(jì)工程師、應(yīng)用程序和系統(tǒng)經(jīng)理以及市場(chǎng)經(jīng)理。他獲得了德克薩斯大學(xué)阿靈頓分校電氣工程碩士學(xué)位。他于2015年畢業(yè)于德克薩斯大學(xué)奧斯汀分校麥考姆斯商學(xué)院,獲得工商管理碩士學(xué)位。
Harish Ramakrishnan目前擔(dān)任德州儀器(TI)的系統(tǒng)工程師,致力于可再生能源。他負(fù)責(zé)利用TI的系統(tǒng)解決方案和專業(yè)知識(shí)解決客戶的設(shè)計(jì)挑戰(zhàn)。這是他就職于TI的第二年,他在通用電氣、斯倫貝謝和L&T的電力電子和電機(jī)控制領(lǐng)域擁有5年的行業(yè)經(jīng)驗(yàn)。Harish于2014年在得州農(nóng)工大學(xué)學(xué)院站獲得了電氣工程碩士學(xué)位。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來(lái)提高工業(yè)功能安全合規(guī)性?
- 如何通過(guò)配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車“芯”動(dòng)力:盡在2025廣州國(guó)際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯(cuò)過(guò)的汽車電子盛會(huì)︱AUTO TECH China 2025第十二屆廣州國(guó)際汽車電子技術(shù)博覽會(huì)
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開(kāi)發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池