【導讀】RKE系統(tǒng)大多被汽車商選用。RKE系統(tǒng)主要由按鍵加密發(fā)送器件和車內內置接收器組成,主要應用于汽車門的控制、無線傳感器、汽車無線輪胎壓測等方面。本文詳解了射頻無線門禁系統(tǒng)電路的設計與實現(xiàn)。
圖1 RKE系統(tǒng)結構框圖
RKE系統(tǒng)的用戶可以通過鑰匙鏈發(fā)送數(shù)據(jù)來打開和關閉汽車門。圖1中,用戶可以按下按鍵開關來發(fā)起與接收機的通信,通過一串64~128位長度的數(shù)據(jù)流進行發(fā)送器和接收器的會話。該數(shù)據(jù)流包括前引導碼、命令碼和一串加密滾動碼。通信速率通常選用2~20 kHz之間,采用ASK調制方式,主要為了延長發(fā)送部分鑰匙鏈中電池的使用壽命。
功率設計
設計中主要考慮的是低電流消耗情況下的高可靠性、系統(tǒng)的成本以及發(fā)送器和接收器的壽命。對于發(fā)送器,電池壽命在3~5年是可以滿足要求的。電池壽命對于接收器件也很重要,因為接收器件必須總是在線偵聽發(fā)送端數(shù)據(jù),典型的電流要求不超過1 mA。一個設計方法是,在一定時間內,接收端保證能夠檢測到有效的發(fā)送信號;為了最大限度地節(jié)約電量,接收器在其他的時間睡眠。
安全性設計
系統(tǒng)的安全性也是一項主要考慮的因素。通過采用Microchip公司專為RKE系統(tǒng)設計的使用DES算法的安全密鑰芯片HCS300來實現(xiàn)系統(tǒng)數(shù)據(jù)的安全加密,防止發(fā)送的數(shù)據(jù)被惡意盜取拷貝;同時在接收端使用MC9RS08KA2進行解密和繼電器控制。HCS300的操作電壓為2.0~6.3 V,是一個可編程28位串行碼、64位加密鍵值、66位發(fā)送長度、32位跳頻碼、4位按鍵碼、2位狀態(tài)碼,具有鍵值讀保護措施的芯片。
DES編碼、解碼圖如圖2和圖3所示。
圖2 DES編碼圖
圖3 DES解碼圖
16位的同步計算器,在每次發(fā)送代碼后都要發(fā)生改變。它隨按鍵的次數(shù)而增加。根據(jù)DES算法加密,在每次發(fā)送的代碼中,由于同步計數(shù)器的變化而使得每次發(fā)送的代碼有大于50%的部分不一樣。圖2說明在編碼過程中如何使用HCS300的內部可編程EEPROM,一旦編碼器檢測有按鍵按下,它就立即讀鍵值,同時刷新同步計數(shù)器。按鍵和同步計數(shù)器經(jīng)過加密算法處理,輸出數(shù)據(jù)是32位的加密信息。攜帶按鍵信息的32位代碼和串行碼組成了整個發(fā)送碼,將被接收部分接收到。
解碼部分必須先學習發(fā)送端的數(shù)據(jù)碼,學習包括計算發(fā)送端的鍵值、解密32位的加密信息和可編程陣列中的串行碼、同步計數(shù)器以及鍵值。在正常的操作模式中,每次接收到的有效格式的信息都被計算。串行碼用于表示發(fā)送碼是否被學習過。如果發(fā)送碼被學習過,那么它的信息被解密和同步計數(shù)器值校驗,最后接收系統(tǒng)執(zhí)行按鍵操作請求。圖3表示了接收部分接收到的信息和它的可編程EEPROM(設計中使用AT24C02)中存儲信息的關系。
射頻收發(fā)器件和微處理器特性
為了保證系統(tǒng)能夠在較低電流消耗的情況下,有較高的發(fā)射功率和接收靈敏度,系統(tǒng)選用了Maxim公司的MAX1473接收芯片和MAX7044發(fā)射芯片。MAX7044發(fā)射芯片工作電壓為+2.1~6.0 V,7.7 mA的低工作電流,250 μs的啟動時間。通信速率能達到100 kbps,小封裝3 mm×3 mm,8引腳SOT23封裝。它消除了基于SAW發(fā)送器設計的問題;采用晶體結構,提供了更大的調制深度和快速的頻率響應機制;降低了溫度的影響,溫度范圍可達-40~125 ℃。
[page]
硬件設計圖
按鍵DES硬件加密部分電路如圖4所示。發(fā)送部分射頻前端電路如圖5所示。接收部分射頻前端電路如圖6所示,元器件參數(shù)如表1所列。接收部分微處理器控制電路如圖7所示。
圖4 按鍵DES硬件加密部分電路
圖5 發(fā)送部分射頻前端電路
圖6 接收部分射頻前端電路
圖7 接收部分微處理器控制電路
MAX1473接收芯片采用3.3 V鋰電池供電,250 μs啟動時間,小于2.5 μA的待機模式工作電流,-114 dBm的靈敏度;采用TSSOP 28引腳封裝設計。MC9RS08KA2作為Freescale公司新推出的一款集成多個功能的高性價比MCU,具有鍵盤中斷和高達20 MHz的內部時鐘,以及8位模計數(shù)器,2 KB Flash空間,63字節(jié)RAM;同時有等待和3種停止模式,滿足系統(tǒng)的超低功耗設計(設計中電流小于1 μA),以及簡易的6引腳BDM編程調試接口,便于系統(tǒng)的實時升級。設計中采用6引腳DFN精密小引腳封裝,滿足系統(tǒng)的小體積要求。
通過結合多家外圍器件和微處理器件,利用Microchip KEELOQ芯片的安全性,Maxim的射頻芯片的可靠性、穩(wěn)定性和Freescale微處理器的高集成度及性價比,整合各家優(yōu)勢,提高了系統(tǒng)的整體性能。通過實際運行,系統(tǒng)達到了預先設計的要求。本次設計只使用了2個按鍵,根據(jù)需要可以外擴功能按鍵達到15個,用于實現(xiàn)不同的控制信息要求。設計人員可以根據(jù)自行需要進行相應的擴展。
相關閱讀:
把超級電容器用于整流濾波是否可行?
整流濾波電路和鉗位保護電路的設計
整流濾波中超級電容器的應用