你的位置:首頁 > RF/微波 > 正文

利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計

發(fā)布時間:2021-09-01 來源:Qorvo 責任編輯:wenwei

【導讀】本文首次展示了一種基于多頻段發(fā)射器設計的可靠商用大功率放大器,該放大器采用了 Charles Campbell 演示的可重新配置的 PA 專利技術 [2,3,4]。可重新配置的 PA 采用可根據(jù)每個相關頻段的控制位設置重新配置的單輸入和單輸出匹配網(wǎng)絡。每個位設置針對特定頻段的最優(yōu)性能配置所有匹配網(wǎng)絡,從而使 PA 能夠在緊湊型封裝中實現(xiàn)最優(yōu)系統(tǒng)級性能。這樣就可以減少整體尺寸和重量。這種新型可重新配置的 PA 設計方法可克服傳統(tǒng)多頻段發(fā)射前端設計的多個缺點。最明顯的優(yōu)勢就是可消除 PA 輸出的頻段選擇開關。從而將輸出損耗降低了 0.8-1.0 dB,使其與傳統(tǒng)設計方法相比具有明顯的優(yōu)勢。如果設計采用最佳負載阻抗和智能開關布局,可重新配置 PA 則可接近通過特定的獨立調(diào)諧頻段放大器實現(xiàn)的性能水平。
 
現(xiàn)代雷達系統(tǒng)配置為多頻段雷達,可在各種環(huán)境和目標條件下使用多個頻段來解析復雜的情景。這些系統(tǒng)可提供無與倫比的性能水平,并且能夠檢測和跟蹤敵對目標。例如,雙頻段雷達 (DBR) 是美國海軍艦隊使用的第一款能夠同時操作兩個頻段(S/X 頻段)的雷達系統(tǒng),由單個資源管理器進行協(xié)調(diào) [1]。S 頻段信號不易受惡劣天氣和大氣衰減的影響。另一方面,X 頻段通常用于高分辨率的目標成像應用。目前大多數(shù)功率放大器 (PA) 都不適合多頻段雷達系統(tǒng),因為所需的頻段相距太遠,且各個 PA 都在每個目標頻段上進行了優(yōu)化。有幾種方法可通過在各個 PA MMIC 之間切換來實現(xiàn)寬帶或多頻段特性。這些方法使用覆蓋兩個頻段的寬帶非均勻分布式 PA (NDPA) 或雙通帶功率放大器設計。
 
與寬帶放大器相比,可重新配置 PA 的優(yōu)勢更明顯。在寬帶放大器設計中,負載阻抗通常設計為低于最佳負載目標值,以實現(xiàn)高輸出網(wǎng)絡帶寬。寬帶放大器降低了輸出功率和功率附加效率 (PAE)。因此,合成最佳負載阻抗的能力是可重新配置 PA 設計的關鍵。這最終能夠增加放大器場效應晶體管 (FET) 外圍,從而在熱限制范圍內(nèi)最大限度地提高輸出功率。這些設計原理已在 Qorvo 的新產(chǎn)品 QPA0007** 中得以實現(xiàn)。QPA0007 是一款可重新配置的 30 W S/X 頻段功率放大器,采用了 Qorvo 150 nm 柵極長度 GaN HEMT 工藝技術 (QGanN15)??芍匦屡渲梅糯笃髋c寬帶和傳統(tǒng)多頻段方法之間的比較如圖 1 中所示。
 
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計
圖 1:多頻段功率放大器前端比較
 
工藝和封裝技術
 
Qorvo 的 QGaN15 工藝技術非常適用于 X 頻段的高功率 PA 設計。它采用具有高柵漏擊穿電壓的快速晶體管,非常適合大功率應用。QGaN15 提供針對不同電路應用的多個工藝選項。對于 QPA0007,采用了一種專利工藝技術來提高設備和電路性能。頂部金屬層支持使用更窄的輸出匹配走線,從而在保持金屬電流密度設計規(guī)則的同時顯著減少物理面積。輸出網(wǎng)絡損耗對金屬厚度不是很敏感。在 X 頻段下,使用鈍化層會降低電路性能,但支持使用經(jīng)濟高效的封裝。在芯片上使用鈍化層的第二個好處是,與只使用無鈍化層的超模壓制封裝相比,它有助于提高 FET 和無源網(wǎng)絡建模精度。使用成本更高的氣腔封裝可消除鈍化層,從而實現(xiàn)更高的電路性能。
 
QPA0007 采用經(jīng)濟高效的超模壓制式 7mm x 6mm 電鍍散熱器 (PHS) 封裝技術。PHS 封裝非常有利于靈活設計,為設計人員提供了良好的片下散熱路徑,適用于中等輸出功率的設備。各種輸入和輸出連接以及比較大的焊盤間距可實現(xiàn)較高的 PCB 附件成品率。在評估板上 (EVB),可從頂部或底部連接控制引腳以及柵極引腳。為實現(xiàn)漏極連接的可靠性,需從兩側(cè)進行連接。QPA0007 封裝引腳分配和尺寸,以及評估板如圖 2 所示。
 
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計
Figure 2: QPA0007 PHS package and evaluation board
 
電路設計
 
從根本上說,QPA0007 就是一款兩級無功匹配的功率放大器。頻段切換由片上電平位移器控制的可切換電容和電感實現(xiàn),該電平位移器可調(diào)整開關 FET 偏置電平。每個網(wǎng)絡的設計都旨在保持各頻段的最佳負載。與頻段特定的設計相比,這只需要進行較小的權衡。輸出網(wǎng)絡損耗是其中一個關鍵的設計參數(shù),且受開關損耗的影響。幸運的是,與在 PA 輸出處使用單獨的頻段選擇開關相比,這些開關損耗比較小。無論是從整體損耗角度來看,還是從復雜性和大小角度來看,調(diào)諧開關數(shù)量都達到最低。通常,為實現(xiàn)低開關損耗,開關外圍往往會變大,因此關斷電容會比較高。關斷電容在確保開關元件的有效性方面發(fā)揮著重要作用。這限制了可切換并聯(lián)電容在輸出網(wǎng)絡中的可用性。通常情況下,S 頻段的調(diào)諧電感要比 X 頻段大得多。在信號路徑中,使用串聯(lián)開關來調(diào)諧串聯(lián)電感意義不大,因為會產(chǎn)生額外的開關損耗,應在實現(xiàn)接近最佳負載目標值方面做出適當妥協(xié)。
 
級間匹配網(wǎng)絡與輸出網(wǎng)絡的設計環(huán)境不同。級間匹配網(wǎng)絡受到帶寬和空間的限制,而不是損耗的限制。因此,可在多個位置使用較小的開關,以實現(xiàn)最佳負載目標值。
 
比較輸出和級間網(wǎng)絡時,輸入網(wǎng)絡的損耗要求比較寬松,且擁有更多的開關和控制信號空間,所以具有最大的靈活性。輸入網(wǎng)絡和級間網(wǎng)絡對放大器的穩(wěn)定性能都具有一定的影響。增加額外損耗可確保在各種工作條件下的穩(wěn)定性,尤其是極寒條件下。調(diào)諧電容和 FET 端子設計能夠在最大輸入驅(qū)動條件下承受較高的電壓常駐波形無線電 (VSWR) 負載條件,以避免擊穿。
 
最后,整體設計挑戰(zhàn)是在不破壞 X 頻段增益的同時限制 S 頻段小信號增益。較低頻率 FET 性能有助于提高 S 頻段性能,但在不降低 X 頻段性能的情況下擴展低端帶寬的挑戰(zhàn)會限制 S 頻段性能。即使采用可切換調(diào)諧元件,這也極具挑戰(zhàn)性。
 
性能
 
QPA0007 經(jīng)過調(diào)諧可覆蓋 S 頻段 3.1-3.5 GHz 和 X 頻段 9-11 GHz。這兩個頻段切換信號互補,S 頻段為 0 V 和 -10 V,X 頻段為 -10 V 和 0 V??刂菩盘枙е?5 mA 的拉電流或灌電流,取決于頻段選擇。
 
在不低于 26V 的條件下,QPA0007 的靜態(tài)偏置電流為 700 mA。由于輸入功率會迫使漏極電流上升,輸出功率和 PAE 完全不受靜態(tài)偏置電流的影響。因此,可以根據(jù)其他性能參數(shù)(如小信號增益和切換時間)來設置靜態(tài)偏置電流。
 
所有報告的測量結(jié)果都是從生產(chǎn) EVB 那里獲得,并使用 QPA0007 輸入和輸出引腳進行了校準。在 25℃ 條件下,測得的 S 頻段小信號增益為 27 dB,X 頻段小信號增益為 23 dB。這種小信號增益差反映了 FET 在整個頻段中的性能變化。S 頻段的輸入回波損耗高于 20 dB,而 X 頻段則為 10 dB。測得的 S 參數(shù)如圖 3 所示。
 
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計
圖 3:QPA0007 S/X 頻段 S 參數(shù)
 
在 S 頻段下,QPA0007 的輸出功率為 45 dBm,PAE 為 48%。最佳工作點的大信號增益為 21 dB,電流消耗為 2.6 A。在 X 頻段下,輸出功率為 44.5 dBm,PAE 為 32%。大信號增益為 18.5 dB,電流消耗為 3.6 A。這些結(jié)果是在漏極脈沖為 100 µs/1 ms 條件下測得的。圖 4 為S/X 頻段大信號性能曲線
 
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計
圖 4:S/X 頻段輸出功率和 PAE
 
諧波是在 50 Ω 負載下測得的。S 頻段的第二諧波低于 -25 dBc,第三諧波為 -25 dBc。X 頻段的第二和第三諧波分別為 -35 dBc 和 -55 dBc。
 
QPA0007 的小信號和驅(qū)動穩(wěn)定性已在 -40℃、VSWR 為 10:1 的負載條件下進行了測試。設備可靠性已在 85℃、VSWR 為 3:1 的負載條件下使用極端輸入驅(qū)動進行了測試,結(jié)果無任何性能下降。
 
切換時間可分為兩類:射頻信號打開時無頻段切換和頻段切換的同時射頻打開。在實際應用中,可能不需要在頻段切換的同時打開射頻,但這可以說明設備的能力。頻段范圍內(nèi)的切換時間不到 100 ns。頻段切換的同時打開射頻的時間不到 1 µs。在兩種使用條件下,射頻關斷幾乎都是瞬間完成。
 
在 100 µs 脈沖寬度和 1 ms 脈沖周期期間,S 頻段下的功耗為 40 W,而 X 頻段下為 70 W。可通過使用漏極脈沖或射頻脈沖來實現(xiàn)脈沖。在 85℃ 基板溫度條件下,這種脈沖特性可將設備結(jié)溫保持在低于長期穩(wěn)定性限值。完成了綜合熱分析,以驗證基于測量數(shù)據(jù)的熱分析結(jié)論。QPA0007 完全符合 MSL 3 和 HBM 250V 額定生產(chǎn)要求。表 1 總結(jié)了測得的 EVB 結(jié)果。
 
利用可采用電子方式重新配置的GaN功率放大器,徹底改變雷達設計
表 1:QPA0007 測量的數(shù)據(jù)性能摘要
 
總結(jié)
 
與傳統(tǒng)的頻段切換功率放大器前端相比,本文所展示的可重新配置的多頻段功率放大器方法具有明顯優(yōu)勢。Qorvo 的 QPA0007 采用了專利技術,是業(yè)界首款使用同一設備在 S/X 頻段下都能改進輸出功率和效率性能的產(chǎn)品。此外,QPA0007 可為客戶提供外形尺寸具有競爭力的高性價比大規(guī)模封裝。
 
*《微波產(chǎn)品摘要》
https://www.mpdigest.com/2021/05/21/revolutionizing-radar-design-with-electronically-reconfigurable-gan-power-amplifiers/
** QPA0007
https://www.qorvo.com/products/p/QPA0007
 
致謝
 
作者感謝 Terry Hon、Paul Prudhomme、Gregory Clark、Sujo Vegus、Gary Petree 和 Reilly Martinez 的個人貢獻和出色支持。
 
參考文獻:
 
[1] https://www.raytheon.com/capabilities/products/dbr
[2] Campbell, C. F. 等人《可采用電子方式重新配置的匹配網(wǎng)絡》美國專利 10,164,587,于 2018 年 12 月 25 日發(fā)表。
[3] Campbell, C. F.、Kobayashi, K. W. 和 Lee, C.《可重新配置的 S/X 頻段 25W GaN 功率放大器 MMIC》,2019 年 GOMAC-Tech。
[4] http://imapsne.org/virtualCDs/2019/2019%20Presentations/C/C2.pdf
 
 
免責聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權問題,請聯(lián)系小編進行處理。
 
推薦閱讀:
 
利用寬帶隙半導體技術提高功率轉(zhuǎn)換效率
改進JBS結(jié)構以降低泄漏電流和提高浪涌電流能力
高速線纜仿真解決方案
Dialog為OceanMedallion可穿戴設備提供具備WiRa功能的芯片解決方案
高精度授時如何改變5G基礎設施游戲規(guī)則
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉