你的位置:首頁 > 傳感技術(shù) > 正文

采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器

發(fā)布時(shí)間:2017-02-23 責(zé)任編輯:wenwei

【導(dǎo)讀】應(yīng)變片傳感器具有可靠、可重復(fù)性好等特性,并且非常精確,廣泛用于制造、工藝控制以及研究領(lǐng)域。它將應(yīng)變轉(zhuǎn)換為電信號,用于壓力傳感、重量測量、力和扭矩測量,以及材料分析等。應(yīng)變片是一個(gè)簡單的電阻,其阻值隨所粘合的材料應(yīng)變而變化。本文介紹用于溫度補(bǔ)償?shù)腗AX1452傳感器信號調(diào)理器。MAX1452靈活的電橋激勵方法大大提高了用戶的設(shè)計(jì)自由度。本文主要關(guān)注帶有和不帶有電流放大的電壓驅(qū)動電路,也可以實(shí)現(xiàn)很多其他電橋驅(qū)動配置。其他設(shè)計(jì)考慮包括在控制環(huán)路上使用外部溫度傳感器,在環(huán)路中送入OUT信號,實(shí)現(xiàn)傳感器線性化調(diào)理(即,相對于測量參數(shù)的非線性)。
 
目前可以提供的應(yīng)變片具有較寬的零應(yīng)變電阻選擇范圍,可以選擇的傳感器材料和相關(guān)技術(shù)也非常廣泛,但在大量應(yīng)用中主要采用了幾類數(shù)值(例如,120Ω和350Ω)。過去,標(biāo)準(zhǔn)值很容易實(shí)現(xiàn)與基本磁反射計(jì)的連接,這些反射計(jì)含有匹配輸入阻抗網(wǎng)絡(luò),從而簡化了應(yīng)變測量。
 
應(yīng)變片的類型和組成
 
金屬應(yīng)變片的生產(chǎn)采用了一定數(shù)量的合金,選擇較小的應(yīng)變片和應(yīng)變材料溫度系數(shù)差。鋼、不銹鋼和鋁成為主要的傳感器材料。也可以使用鈹銅、鑄鐵和鈦,“大部分”合金推動了溫度兼容應(yīng)變片的大批量低成本生產(chǎn)。350Ω銅鎳合金應(yīng)變片是最常用的。
 
厚膜和薄膜應(yīng)變片具有可靠和易于生產(chǎn)的特性,適用于汽車行業(yè),其生產(chǎn)一般采用陶瓷或者金屬基底,在表面沉積絕緣材料。通過汽相沉積工藝將應(yīng)變片材料沉積在絕緣層的表面。采用激光汽化或者光掩模和化學(xué)刻蝕技術(shù)在材料上刻出傳感片和連接線。有時(shí)會加入保護(hù)絕緣層,以保護(hù)應(yīng)變片和連接線。
 
應(yīng)變片材料一般包括專用合金,以產(chǎn)生所需的應(yīng)變片阻抗、阻抗壓力變化,以及(出于溫度穩(wěn)定性)傳感器和基本金屬之間的最佳溫度系數(shù)匹配等。針對該技術(shù)開發(fā)了標(biāo)稱3kΩ至30kΩ的應(yīng)變片和電橋電阻,用于生產(chǎn)壓力和力傳感器。
 
電橋激勵技術(shù)
 
應(yīng)變片、薄膜和厚膜應(yīng)變片傳感器一般采用惠斯通電橋?;菟雇姌?qū)?yīng)變片應(yīng)變產(chǎn)生的電阻轉(zhuǎn)換為差分電壓(圖1)。+Exc和-Exc終端加上激勵電壓后,+VOUT和-VOUT終端上出現(xiàn)與應(yīng)變成正比的差分電壓。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖1. 惠斯通電橋配置中連接的應(yīng)變片
 
在半有源惠斯通電橋電路(圖2)中,電橋只有兩個(gè)元件是應(yīng)變片,它們響應(yīng)材料中的應(yīng)變。這種配置的輸出信號(滿量程負(fù)載一般為1mV/V)是全有源電橋的一半。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖2. 半有源惠斯通電橋配置中連接的應(yīng)變片
 
另一種全有源電橋電路(圖3)采用了四片以上有源350Ω應(yīng)變片。特征電橋電阻是350Ω,輸出靈敏度是2mV/V,應(yīng)變片在較大范圍內(nèi)采用了應(yīng)變材料。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖3. 一種16應(yīng)變片惠斯通電橋配置
 
溫度對傳感器性能的影響
 
溫度導(dǎo)致零負(fù)載輸出電壓漂移(也稱為失調(diào)),在負(fù)載情況下使靈敏度出現(xiàn)變化(也定義為滿量程輸出電壓),對傳感器性能有不利的影響。傳感器生產(chǎn)商在電路中引入溫度敏感電阻,補(bǔ)償這些變化的一階影響,如圖1至圖3所示。
 
當(dāng)溫度變化時(shí),電阻RFSOTC和RFSOTC_SHUNT調(diào)制電橋激勵電壓。一般而言,RFSOTC材料有正溫度系數(shù),電橋激勵電壓隨溫度升高而降低。隨著溫度的提高,傳感器輸出對負(fù)載越來越敏感。降低電橋激勵電壓能夠減小傳感器輸出,有效地抵消內(nèi)在溫度效應(yīng)。電阻RSHUNT對溫度或者應(yīng)變不敏感,用于調(diào)整RFSOTC產(chǎn)生的TC補(bǔ)償量。0Ω的RSHUNT能夠抵消RFSOTC的所有影響,而無限大的值(開路)將使能RFSOTC的所有影響。該方法補(bǔ)償一階溫度靈敏度的效果非常好,但是不能解決更復(fù)雜的高階非線性效應(yīng)。
 
通過在電橋的一臂上插入溫度敏感電阻來完成失調(diào)變化的溫度補(bǔ)償。這些電阻是圖1至圖3中所示的ROTC_POS和ROTC_NEG。分流電阻(ROTC_SHUNT)調(diào)整ROTC_POS或者ROTC_NEG引入的溫度影響量。使用ROTC_POS或者ROTC_NEG取決于失調(diào)是正溫度系數(shù)還是負(fù)溫度系數(shù)。
 
怎樣實(shí)現(xiàn)電流激勵驅(qū)動
 
由于電橋電阻隨負(fù)載變化,以及內(nèi)置靈敏度補(bǔ)償網(wǎng)絡(luò)(圖2中顯示的RFSOTC和RFSOTC-SHUNT)中的電流過大或者電流反向等原因,使用電流來激勵電橋傳感器有很大的困難。
 
可以采用各種方法來解決這些問題,實(shí)現(xiàn)電流激勵驅(qū)動。一種簡單的方法是使用MAX1452,通過配置實(shí)現(xiàn)電壓驅(qū)動。該電路包括很少的外部元件,這些元件可滿足電壓激勵需要的大電流要求。MAX1452是全集成信號調(diào)理IC,完成傳感器激勵、信號濾波和放大、失調(diào)和靈敏度的溫度線性化等。
 
MAX1452主要設(shè)計(jì)用于壓力傳感中的硅片壓阻換能器(PRT)。它采用了4個(gè)16位Σ-Δ DAC (D-A轉(zhuǎn)換器)、溫度傳感器和溫度系數(shù)表來完成電橋傳感器的溫度補(bǔ)償和線性化(圖4)。在傳感單元和電壓輸出之間通過模擬信號通路來完成溫度補(bǔ)償和放大。該IC借助很少的外部電路就可以適應(yīng)金屬片或者厚膜應(yīng)變片,為惠斯通電橋提供電壓激勵以及更強(qiáng)的電流驅(qū)動能力。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖4. MAX1452是電橋傳感器全集成信號調(diào)理IC 
 
MAX1452包括PRT電流激勵電路(圖5)。電路包括一個(gè)電流鏡像(T1和T2),將小參考電流放大14倍,足以驅(qū)動2kΩ到5kΩ的PRT傳感器。在RISRC和RSTC上加電壓可以獲得參考電流。該電壓由運(yùn)算放大器U1反饋環(huán)路中的16位精度滿量程輸出D/A轉(zhuǎn)換器(FSO DAC)設(shè)置。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖5. PRT電橋激勵電路圖
 
FSO DAC采用了Σ-Δ體系結(jié)構(gòu),其數(shù)字輸入來自閃存中的溫度系數(shù)表。溫度每遞增1.5°C,每4ms向DAC提供唯一的16位系數(shù)。DAC輸出電壓驅(qū)動p溝道MOSFET T1的柵極,隨之向RISRC和RSTC驅(qū)動足夠的電流,產(chǎn)生等于FSO DAC電壓的電壓。通過T1的電流,由T2鏡像放大14倍,成為電橋驅(qū)動電流。
 
電阻RSTC使能傳感器激勵電流的一階調(diào)制,該電流是溫度的函數(shù)。對于硅片PRT換能器,當(dāng)電流通過電橋時(shí),從結(jié)果傳感器電橋電壓中獲得溫度。這類傳感器在電橋電阻和溫度之間具有很好的傳輸函數(shù)。通過電流激勵電橋,您可以調(diào)整結(jié)果電橋電壓,利用它對失調(diào)和靈敏度進(jìn)行一階補(bǔ)償。這可以通過連接電橋電壓(引腳BDR)和滿量程輸出溫度補(bǔ)償DAC (FSOTC DAC)的參考輸入來實(shí)現(xiàn)。但是要記住,當(dāng)使用金屬片或者厚膜應(yīng)變片時(shí),一般不適合采用電流激勵。
 
電壓驅(qū)動電路
 
MAX1452的內(nèi)部75kΩ電阻可用作RISRC和RSTC,也可以通過開關(guān)SW1和SW2連接外部電阻,如圖5所示。通過ISRC引腳訪問運(yùn)算放大器,實(shí)現(xiàn)電橋驅(qū)動的電壓反饋。圖6、圖7和圖8介紹了三種不同的電壓驅(qū)動電路。
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖6. 高阻抗傳感器電路圖,沒有使用外部器件
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖7. 具有npn晶體管的低阻抗傳感器電路圖
 
采用信號調(diào)理IC驅(qū)動應(yīng)變片電橋傳感器
圖8. 使用外部RSUPP驅(qū)動的電路
 
對于2kΩ以上的高阻抗傳感器,圖6中的簡單電路為電橋提供了電壓驅(qū)動激勵。打開SW1和SW2禁止FSOTC DAC調(diào)制電路。連接引腳ISRC和BDR形成運(yùn)算放大器反饋環(huán)路,從而獲得電橋激勵電壓反饋。通過向電橋源出電流,晶體管T1和T2 (并聯(lián))提高了電橋電壓,使其等于FSO DAC電壓。
 
惠斯通電橋電路中連接的低阻抗(120Ω至2kΩ)應(yīng)變片或者厚膜電阻不能直接由T2驅(qū)動。采用射極跟隨配置的外部npn晶體管可以解決這一問題(圖7)。流過npn晶體管的電流直接來自集電極VDD電源。驅(qū)動T1和T2,使其足以導(dǎo)通,打開npn晶體管,使運(yùn)算放大器U1提高電橋電壓。為關(guān)閉環(huán)路,ISRC的電橋電壓被反饋至運(yùn)算放大器。對電橋電壓進(jìn)行穩(wěn)壓,以匹配FSO DAC輸出電壓,在電橋上加入一個(gè)小的0.1µF電容,以保持穩(wěn)定。
 
npn晶體管的基射極電壓(VBE)具有較大的溫度系數(shù),通過U1的反饋來消除方程中該項(xiàng)的影響。低溫時(shí),VBE較大,最大電橋電壓限制為:
 
VBRIDGEMAX = VDD - VT2SAT - VBE
 
與VBE溫度補(bǔ)償相似,控制反饋環(huán)路消除了方程中的TNPN增益溫度分量。
 
為低阻抗電橋提供足夠驅(qū)動電流的另一方法是在T2上并聯(lián)一個(gè)小的外部電阻(圖8中的RSUPP)。RSUPP保證了電橋電壓略小于所需的值(VDD = 5.0V為3.0V)。T2提供更多的電流,把電橋電壓提高到所需的值。由于T2處于OFF狀態(tài)時(shí),T2提供最小的電流,因此,應(yīng)針對最差情況的小電橋電壓來調(diào)整RSUPP。同樣,T2的最大電流能力(VBDR = 4.0V時(shí)2mA)決定了可用的最大電橋電壓調(diào)制。該電路可以用于具有靈敏度(TCS)相對較低溫度系數(shù)的電橋傳感器,它不需要較大的電橋電壓調(diào)制。
 
U1反饋消除了RSUPP溫度系數(shù)導(dǎo)致的靈敏度效應(yīng)。設(shè)計(jì)電路時(shí),為保證適當(dāng)?shù)尿?qū)動電流余量,應(yīng)考慮RSUPP功率降額最大值和最小值。
 
總結(jié)
 
MAX1452靈活的電橋激勵方法大大提高了用戶的設(shè)計(jì)自由度。本文主要關(guān)注帶有和不帶有電流放大的電壓驅(qū)動電路,并介紹了其他電橋驅(qū)動配置。其他設(shè)計(jì)考慮包括在控制環(huán)路上使用外部溫度傳感器,在環(huán)路中送入OUT信號,實(shí)現(xiàn)傳感器線性化(即,相對于測量參數(shù)的非線性)等。
 
本文來源于Maxim。
 
 
 
 
推薦閱讀:



能輕松控制LCD顯示屏亮度的環(huán)境光傳感器(附源代碼)
良心出品|頂級MLCC知識全在這里(附行內(nèi)知名廠商)
解讀“你的名字”——MEMS傳感器
不再“紙上談兵”!2017年智能家居將從概念走進(jìn)現(xiàn)實(shí)
圖解中國傳感器行業(yè)市場現(xiàn)狀及運(yùn)行態(tài)勢
 
 
 
要采購傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉