圖 1,Pixel 手機(jī)的 Pixel Visual Core 內(nèi)部
當(dāng)CIS變得不那么重要,手機(jī)拍照在追求什么?
發(fā)布時間:2021-04-20 責(zé)任編輯:lina
【導(dǎo)讀】在談到成像或具體到手機(jī)拍照時,通常市場更關(guān)注的是攝像頭模組本身,或者其中最核心的 CMOS 圖像傳感器(CIS)。當(dāng)前,智能手機(jī) CIS 市場的競爭仍然非常激烈,更多需求正從 8 英寸 wafer 轉(zhuǎn)向 12 英寸,同時隨著 4000 萬像素以上的 CIS 需求提升,像素工藝節(jié)點(diǎn)也在變小。
在談到成像或具體到手機(jī)拍照時,通常市場更關(guān)注的是攝像頭模組本身,或者其中最核心的 CMOS 圖像傳感器(CIS)。當(dāng)前,智能手機(jī) CIS 市場的競爭仍然非常激烈,更多需求正從 8 英寸 wafer 轉(zhuǎn)向 12 英寸,同時隨著 4000 萬像素以上的 CIS 需求提升,像素工藝節(jié)點(diǎn)也在變小。
這一改變,這對于手機(jī) CIS 市場份額第一的索尼而言,恐怕算不上是一個好消息。今年 8 月,Twitter 上出現(xiàn)一組消息源未經(jīng)考證的數(shù)據(jù),指出今年第一、二季度,三星與索尼的圖像傳感器市場份額縮短到有史以來的最接近。索尼圖像傳感器在今年第二季度的市場份額下探至 42.5%,三星上升到 21.7%。在《國際電子商情》來看,這與三星乃至更多市場參與者,如 SK 海力士,在高像素相關(guān)的制程工藝上的優(yōu)勢有關(guān)。
成像市場的價值恐怕正在發(fā)生一場轉(zhuǎn)變。由于智能手機(jī)在成像領(lǐng)域占據(jù)了最大市場份額(Yole Developpement 去年年中的數(shù)據(jù)顯示,移動 CIS 占到整個 CIS 銷售額的 70%),本文主要以智能手機(jī)這個門類的應(yīng)用為例,來談成像市場正在發(fā)生的轉(zhuǎn)變——原本以 CIS 為主的市場正逐步轉(zhuǎn)至以圖像 / 視覺處理器,如 AI 專核、ISP(圖像處理器)等為主,這種變化將創(chuàng)造更大的市場價值。
另外,智能手機(jī)成像的特殊性在于,其他領(lǐng)域的成像,如醫(yī)療成像、工業(yè)領(lǐng)域的機(jī)器視覺等,在圖像傳感器層面是以“拍得到”為主要目標(biāo),并且更注重圖像數(shù)據(jù)的后處理與計算。而手機(jī)拍照向來以“拍得好”為主要目標(biāo),它對圖像傳感器的重視由來已久。
智能手機(jī)制造商在宣傳其拍照的賣點(diǎn)時,仍然更傾向于 CIS 本身的高像素和大尺寸。但成像質(zhì)量的決定因素已經(jīng)從 CIS,向圖像數(shù)據(jù)的處理與計算環(huán)節(jié)傾斜,它體現(xiàn)的也正是數(shù)字芯片本身的技術(shù)發(fā)展以及 AI 技術(shù)的快速推進(jìn)對傳統(tǒng)光學(xué)技術(shù)發(fā)展的挑戰(zhàn)。
前兩年就開始出現(xiàn)的苗頭
聯(lián)發(fā)科在 2018 年提出了“真 AI 相機(jī)”的概念。該概念包含了三個主要的因素:1. 高像素、大尺寸 CIS;2. 多核 ISP;3. 高性能的 AI 專核。其中,第一點(diǎn)是成像領(lǐng)域的共識,而后兩點(diǎn)都與圖像數(shù)據(jù)的后處理(Post Processing)相關(guān)。
如果說 ISP 是處理(Processing)數(shù)據(jù),那么 AI 及其他視覺處理器就是對數(shù)據(jù)做更深度的計算(Computing)。ISP 的重要性在過去總被反復(fù)提及,但其在成像領(lǐng)域,尤其是手機(jī)拍照上的地位遠(yuǎn)不及 CIS。此外,AI 專核也是成像領(lǐng)域這兩年的香餑餑。在此基礎(chǔ)上,“真 AI 相機(jī)”這一營銷概念的提出,本質(zhì)上是為了吸引終端設(shè)備制造商來采用聯(lián)發(fā)科的 SoC 產(chǎn)品,不過它卻真正將 ISP 與 AI 專核提到了與 CIS 相同的高度。
無論是專為攝像頭配備的 ISP,還是 AI 處理單元,它們在拍照中的應(yīng)用都可以認(rèn)為是這兩年頗流行的 Computational Photography(計算攝影)。普羅大眾對于“AI 拍照”的理解,恐怕還停留在美顏、人臉識別、去背景或者讓天空更藍(lán)、草地更綠這樣的層面。實(shí)際上,AI 對于成像的協(xié)助,已經(jīng)深入到了拍照的方方面面,這部分將在下文探討。
除了聯(lián)發(fā)科這樣的芯片廠商之外,谷歌的表現(xiàn)也值得關(guān)注。據(jù)《國際電子商情》了解,谷歌在 2017 年為其 Pixel 2 手機(jī)配備了專門的 Pixel Visual Core(Pixel 視覺核心,圖 1),這是由該公司自主設(shè)計的基于 Arm 系統(tǒng)的 SiP 封裝圖像 / 視覺處理器。這枚處理器可以看作是一個完全可編程的圖像、視覺與 AI 多核專用架構(gòu)(domain-specific architecture)芯片,其應(yīng)用在 Pixel 4 之上迭代為 Pixel Neural Core(Pixel 神經(jīng)核心)。
當(dāng)然,谷歌 Pixel 系列手機(jī)在移動領(lǐng)域普遍更具有前瞻性和試水性質(zhì)。谷歌在 Computational Photography 領(lǐng)域有著多年的沉淀,他們認(rèn)為與高通在 SoC 內(nèi)部提供 ISP 與 AI Engine 能力相比,針對拍照來自研專用的圖像處理硬件更加高效。
圖 1,Pixel 手機(jī)的 Pixel Visual Core 內(nèi)部
在前智能手機(jī)時代,外置 ISP/DSP 是個常見的概念,但隨著芯片集成大趨勢的到來,當(dāng)代圖像處理硬件已很少以獨(dú)立的形態(tài)存在于 SoC 之外。谷歌的這種做法進(jìn)一步提升了圖像 / 視覺處理器的地位:雖然外置一顆獨(dú)立圖像 / 視覺芯片的方案未必會成為趨勢,但是在拍照的各環(huán)節(jié)中,后處理已經(jīng)成為更重要的組成部分。
谷歌 Pixel 手機(jī)有個更有趣的傳統(tǒng):相同型號的 CIS 可以連續(xù)用在兩代 Pixel 手機(jī)上,比如 Pixel 3 和 Pixel 4 的主攝都采用疑似索尼 IMX363 的 CIS。即便如此,手機(jī)的拍照表現(xiàn)仍然會有飛躍,這個特點(diǎn)一直為人們所津津樂道。這也表明,谷歌在成像上非常重視圖像處理,而不僅只關(guān)注圖像傳感。
再回過頭來看今年的高通驍龍 865 針對成像的堆料:驍龍 865 的 ISP 部分支持每秒 2 GigaPixel 的速度,同時也支持 4K HDR、8K 視頻拍攝以及最大 2 億像素的照片拍攝。在與第五代 AI Engine 合作的情況下,這顆 ISP 能夠快速識別不同的拍攝背景、人、對象。如今,高通會著重宣傳每一代驍龍旗艦中的成像。
再看看蘋果今年發(fā)布的 A14,其 CPU、GPU 性能提升的幅度并不算大,但 AI 專核部分的 Neural Engine(神經(jīng)引擎)增加到 16 個核心,這讓其算力提升到了 11TOPS;A14 CPU 內(nèi)部還特別包含了升級過的機(jī)器學(xué)習(xí) AMX 模塊(矩陣乘法加速器)。如今,手機(jī)上的 AI 處理器總被人詬病沒有太多應(yīng)用場景,但它們在 Computational Photography 上正默默發(fā)揮作用。
愈發(fā)明確的市場現(xiàn)狀
索尼在今年 5 月推出了兩款“智能視覺傳感器”——IMX500 與 IMX501。該公司宣稱,這是全球最早加入了 AI 處理能力的圖像傳感器。這兩顆芯片的傳感器部分,是比較典型的背照式 CIS;而集成的邊緣 AI 處理部分,包含了 DSP 的邏輯芯片,也包括了 AI 模型所需的臨時存儲空間,屬于比較典型的邊緣 AI 系統(tǒng)。更嚴(yán)謹(jǐn)?shù)卣f,IMX500/501 恐怕不應(yīng)僅定義為“傳感器”。
這兩顆芯片在配合云服務(wù)的情況下,在數(shù)據(jù)處理階段僅獲取元數(shù)據(jù)作為輸出,這樣能夠降低數(shù)據(jù)傳輸延遲,減少功耗與通訊的成本。這類設(shè)計的本質(zhì)是:將部分“后處理”的能力集成到圖像傳感器上。這樣一來,錄制視頻時就能進(jìn)行更高精度、實(shí)時的對象追蹤。目前,這兩款傳感器主要應(yīng)用于零售、工業(yè)設(shè)備。
另外,在配套解決方案上,索尼也推出了用于這類集成 AI 能力的 CIS 的軟件訂閱服務(wù)。加入了 AI 數(shù)據(jù)分析的潛在市場價值大于傳感器市場本身。雖然索尼并不期望這項(xiàng)服務(wù)能夠在短期內(nèi)盈利,但是它非??春闷溟L期發(fā)展。即便 IMX500/501 并不面向智能手機(jī)產(chǎn)品,這一步也能體現(xiàn)索尼在 CIS 業(yè)務(wù)開發(fā)的思路轉(zhuǎn)變:即開始從單純的圖像傳感,往圖像 / 視覺處理做擴(kuò)展。畢竟傳統(tǒng) CIS 市場的增長速度正在放緩。
今年年中,Yole Developpement 發(fā)布了一份題為《2019 圖像信號處理器與視覺處理器市場與技術(shù)趨勢》的報告。該報告明確提到:“AI 徹底改變了視覺系統(tǒng)中的硬件,對整個行業(yè)都造成了影響。”
“圖像分析增加了很多價值。圖像傳感器供應(yīng)商們開始對將軟件層集成到系統(tǒng)中感興趣。如今圖像傳感器必須跳出單純的捕獲圖像這一能力之外,再對圖像做分析。”
“但要跑這樣的軟件,就意味著高算力和存儲需求,也就有了視覺處理器的出現(xiàn)。ISP 市場 2018-2024 年的年復(fù)合增長率穩(wěn)定在 3%,即 ISP 的市場價值到 2024 年會達(dá)到 42 億美元。與此同時,視覺處理器市場也會迎來爆發(fā)增長,2018-2024 年的年復(fù)合增長率為 18%,到 2024 年,其市場價值會達(dá)到 145 億美元。”
圖 2,2018-2024 年,圖像 / 視覺處理器的出貨量與市場規(guī)模預(yù)期
來源:Yole Developpement
這個值當(dāng)然仍未達(dá)到 CIS 年度總價值,上述兩個市場相加才大約超過今年的 CIS 市場規(guī)模(今年 CIS 行業(yè)產(chǎn)值預(yù)計為 172 億美元)。這還需要注意,CIS 市場的增速正在放緩以及此處并未考慮視覺處理芯片配套的軟件市場。起碼索尼認(rèn)定,其長期的市場發(fā)展?jié)摿Υ笥?CIS 市場本身。Yole Developpement 的預(yù)測數(shù)據(jù)顯示,ISP 在市場中所占比重將逐步降低,而更注重計算的視覺處理器顯然更為緊俏(圖 2)。
“值得注意的是,很多傳統(tǒng)的行業(yè)參與者,在應(yīng)對 AI 趨勢時顯得比較局促。這也讓其他更多參與者加入到業(yè)務(wù)競爭中,比如蘋果、華為,Mobileye 這樣的初創(chuàng)公司,甚至其他領(lǐng)域的企業(yè),像是英偉達(dá)。”這是成像市場擴(kuò)展了縱深的表現(xiàn)。
AI 究竟為手機(jī)拍照帶來了什么?
今年 3 月,法國知名影像實(shí)驗(yàn)室 DxOMark 曾刊文提到,近 10 余年來,智能手機(jī)拍照的畫質(zhì)提升超過 4EV,其中 1.3EV 來自圖像傳感器 / 光學(xué)技術(shù)的提升,還有 3EV 是來自圖像 / 視覺處理器(圖像數(shù)據(jù)后處理)帶來的提升。這已經(jīng)基本顛覆了大眾對于提升拍照畫質(zhì),就是要提升 CIS 技術(shù)的基本認(rèn)知。
而圖像 / 視覺處理作為一個相當(dāng)古老并發(fā)展多年的議題,AWB(自動白平衡)、ANR(主動降噪)、3DNR(3D 降噪)、BLC(黑電平校正)、HDR 等原本都屬于 ISP 的常規(guī)項(xiàng)目。近兩年,在圖像后處理中 AI 拍照被提得最多的功能,包括人臉識別、拍攝對象識別、語義分割、智能美顏等。
這些的確是 AI 為成像帶來的價值,但 AI 參與手機(jī)拍照的畫質(zhì)提升,滲透到了上述常規(guī)項(xiàng)目中。谷歌在 Computational Photography 方面的很多的研究也涉及到了這些組成部分,比如針對低光照場景下的自動白平衡,傳統(tǒng)算法在白平衡修正上顯得無能為力。谷歌幾年前就應(yīng)用了機(jī)器學(xué)習(xí):通過向模型輸入大量白平衡修正到位的照片,來訓(xùn)練自動白平衡的智能模型。
谷歌在 Pixel 手機(jī)成像的諸多環(huán)節(jié)和特性上應(yīng)用了機(jī)器學(xué)習(xí)。比如拍照取景時的實(shí)時 HDR,再比如視頻拍攝的防抖。在數(shù)據(jù)后處理時,首先在第一階段進(jìn)行動作分析、獲取陀螺儀信號、結(jié)合光學(xué)防抖動作;其次在 motion filtering 環(huán)節(jié)結(jié)合機(jī)器學(xué)習(xí)與信號處理,來預(yù)測相機(jī)本身的運(yùn)動軌跡;最后再最終的幀合成環(huán)節(jié),對快門與微動造成的畫面失真做補(bǔ)償。
圖 3,來源:Google AI Blog
更為典型的例子是模擬背景虛化效果。傳統(tǒng)方案模擬背景虛化主要是靠立體視覺,而谷歌提出的方案,不僅依靠兩種立體視覺方案(Pixel 4 手機(jī)的雙攝與雙像素技術(shù)),而且為加強(qiáng)虛化可靠性,對畫面拍攝對象做語義分割:谷歌打造了一臺五顆攝像頭的設(shè)備,拍攝大量場景,收集足夠的訓(xùn)練數(shù)據(jù)。利用 Tensorflow 訓(xùn)練一個卷積神經(jīng)網(wǎng)絡(luò):首先分別單獨(dú)處理雙像素與雙攝的輸入數(shù)據(jù),中間有編碼器將輸入信息編碼為 IR(中間層),隨后兩部分信息經(jīng)過另一個編碼器,完成最終的對象深度計算(圖 3)。這里的編碼器本身就是一種神經(jīng)網(wǎng)絡(luò)。
今年 4 月,聯(lián)發(fā)科的研究人員發(fā)表了一篇題為 Learning Camera-Aware Noise Models 的論文,提出對圖像傳感器噪聲進(jìn)行建模的方法,通過“一種數(shù)據(jù)驅(qū)動的方法,從真實(shí)環(huán)境噪聲中去學(xué)習(xí)噪聲模型。這種噪聲模型與相機(jī)相關(guān),不同的傳感器有不同的噪聲特點(diǎn),它們都能被學(xué)習(xí)。”
這些例子都表明,越來越多不同層級的市場參與者都在投入圖像的后處理。所以采用老型號 CIS 的谷歌 Pixel 手機(jī),在很多成像項(xiàng)目對決中,與其他采用上億像素 CIS 的手機(jī)相比,依然保持優(yōu)勢。外置一顆 AI 視覺芯片的方案,顯然讓谷歌更有發(fā)揮空間。
如今的手機(jī)已經(jīng)開始廣泛應(yīng)用 AI 來做成像質(zhì)量的加強(qiáng),而且包括了取景、抑噪、自動白平衡這些傳統(tǒng)環(huán)節(jié)的參與。就用戶層面來看,AI 芯片參與計算并不會有很強(qiáng)的感知。
當(dāng)這些技術(shù)在成像領(lǐng)域變得越來越普遍時,過去的移動成像唯 CIS 中心論愈發(fā)失效。如今的終端廠商在火拼手機(jī)拍照時,比拼的重點(diǎn)已經(jīng)向圖像 / 視覺處理與計算偏移。畢竟傳統(tǒng)光學(xué)技術(shù)發(fā)展的速度無法與與數(shù)字芯片相比。
現(xiàn)在很多人拿手機(jī)拍照去與全畫幅相機(jī)比較,即便這樣的對比沒有任何實(shí)際意義,但它也能體現(xiàn)手機(jī)的圖像 / 視覺處理計算能力,很大程度彌補(bǔ)了移動 CIS 的短板。實(shí)際上,這也是兩種方案、兩個時代的比拼。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時間時,使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
精密電阻
精密工具
景佑能源
聚合物電容
君耀電子
開發(fā)工具
開關(guān)
開關(guān)電源
開關(guān)電源電路
開關(guān)二極管
開關(guān)三極管
科通
可變電容
可調(diào)電感
可控硅
空心線圈
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器