應(yīng)用于電機(jī)驅(qū)動(dòng)的隔離運(yùn)放單端和差分輸出對(duì)采樣性能的影響
發(fā)布時(shí)間:2020-09-11 來(lái)源:Yuan Tan 責(zé)任編輯:wenwei
【導(dǎo)讀】電機(jī)驅(qū)動(dòng)器是用來(lái)控制各種電機(jī),比如AC變頻器,伺服電機(jī)的一種控制器。一般是通過(guò)位置、速度和力矩三種方式對(duì)電機(jī)進(jìn)行控制,實(shí)現(xiàn)傳動(dòng)系統(tǒng)定位。高分辨率、精確電壓電流測(cè)量在需要高性能扭矩和運(yùn)動(dòng)控制的工業(yè)電機(jī)驅(qū)動(dòng)應(yīng)用中至關(guān)重要。因?yàn)楣I(yè)電機(jī)驅(qū)動(dòng)器需要滿足 (IEC) 61800-5-1的電氣安全的需求,所以相應(yīng)需要采取普通或加強(qiáng)型的隔離電路設(shè)計(jì)。
隔離運(yùn)放在電機(jī)驅(qū)動(dòng)中的應(yīng)用:
電機(jī)驅(qū)動(dòng)器是用來(lái)控制各種電機(jī),比如AC變頻器,伺服電機(jī)的一種控制器。一般是通過(guò)位置、速度和力矩三種方式對(duì)電機(jī)進(jìn)行控制,實(shí)現(xiàn)傳動(dòng)系統(tǒng)定位。高分辨率、精確電壓電流測(cè)量在需要高性能扭矩和運(yùn)動(dòng)控制的工業(yè)電機(jī)驅(qū)動(dòng)應(yīng)用中至關(guān)重要。因?yàn)楣I(yè)電機(jī)驅(qū)動(dòng)器需要滿足 (IEC) 61800-5-1的電氣安全的需求,所以相應(yīng)需要采取普通或加強(qiáng)型的隔離電路設(shè)計(jì)。相較于霍爾效應(yīng)傳感器、磁通門(mén)傳感器與電流互感器, 分流電阻器加隔離運(yùn)放的方案在線性度、帶寬和漂移等性能更好。在電機(jī)驅(qū)動(dòng)器中,通常會(huì)在功率板用隔離采樣運(yùn)放來(lái)對(duì)相電流,母線電流和母線電壓等進(jìn)行采樣,如下圖1:
圖1 電機(jī)驅(qū)動(dòng)器電壓電流采樣
下圖所示,是使用隔離運(yùn)放來(lái)進(jìn)行相電流采樣的常見(jiàn)結(jié)構(gòu)和內(nèi)部原理圖。
圖2 相電流采樣的常見(jiàn)結(jié)構(gòu)
應(yīng)用在該系統(tǒng)里的隔離運(yùn)放TI明星產(chǎn)品如下表:
表1 應(yīng)用于電機(jī)驅(qū)動(dòng)系統(tǒng)的隔離運(yùn)放明星產(chǎn)品
隔離運(yùn)放單端和差分輸出對(duì)采樣性能的影響:
運(yùn)放的差分輸出結(jié)構(gòu)因具有更好的抗干擾性而廣泛存在,但是后級(jí)MCU的ADC一般為單端輸入,所以常規(guī)做法是在靠近MCU內(nèi)置ADC輸入的位置,加上一個(gè)單端轉(zhuǎn)差分的運(yùn)放。那么經(jīng)常會(huì)產(chǎn)生疑問(wèn),能不能不額外加這個(gè)運(yùn)放,直接將隔離運(yùn)放的差分輸出的一個(gè)腳接地,另一個(gè)腳接入MCU的內(nèi)置ADC呢?如果這樣做,會(huì)帶來(lái)什么問(wèn)題呢?
我們以AMC1311為例來(lái)探討這個(gè)問(wèn)題。
首先,為了更直觀地了解AMC1311的輸出性能,AMC1311的差分輸出Outp和Outn的波形可以通過(guò)TINA仿真電路得到, TI.com提供PSpice模型:https://www.ti.com/product/AMC1311#design-development
圖3 AMC1311的TINA仿真模型參考電路
輸入采樣量Vin=0~2V正弦,輸出波形如下圖4,
Outp: 1.44~2.44V, ΔVpp_p=1V
Outn: 0.44~1.44V, ΔVpp_n=1V
Out: 0~2V, ΔVpp=2V
Outp和Outn的波形以1.44V呈鏡像。
圖4 AMC1311的pspice仿真輸出波形
如果將Outn懸空或通過(guò)電阻接地(注意,輸出腳不可以直接接地,接地電阻建議10k?),將Outp直接接入后級(jí)單端輸入ADC里。帶來(lái)的影響:
1. 共模輸出電壓Vcmout誤差的影響
從AMC1311數(shù)據(jù)手冊(cè)得知:Vcmout=1.44±50mV。若差分結(jié)構(gòu)輸出,Outn與Outp因?yàn)榛コ淑R像,兩者相減得到Out,Vcmout的50mV的誤差可以認(rèn)為相互抵消,忽略不記。但是單端結(jié)構(gòu)則不然。這個(gè)±50mV會(huì)帶來(lái)原始的Vos誤差。對(duì)于單端結(jié)構(gòu),當(dāng)輸入腳短接,Out的值理論上為1.44V,如果不是, 那么需要進(jìn)一步的校準(zhǔn),校準(zhǔn)工作一般在MCU的算法中進(jìn)行。
1. 對(duì)后級(jí)ADC的SNR的影響
SNR(signal to noise ratio)是重要的AC指標(biāo),影響ADC的有效位數(shù)ENOB,理想公式為:
而SNR的公式定義如下:
圖5 SNR定義
單端輸出的交流幅值是差分輸出的一半,所以如果采用單端結(jié)構(gòu),那么SNR指標(biāo)會(huì)變差,進(jìn)而影響ADC有效位數(shù)。 所以,相較于差分輸出結(jié)構(gòu),單端輸出結(jié)構(gòu)對(duì)于運(yùn)放輸出范圍和后級(jí)ADC輸入范圍的利用率僅為一半,會(huì)帶來(lái)對(duì)于Vos以及SNR指標(biāo)的不良影響??蛻粼诓捎眠@種結(jié)構(gòu)時(shí),需要考慮這些不良影響。
隔離運(yùn)放輸出單端轉(zhuǎn)差分輸出方案推薦
通過(guò)添加后級(jí)運(yùn)放可以在實(shí)現(xiàn)差分轉(zhuǎn)單端的同時(shí)進(jìn)行信號(hào)調(diào)理可以完美適配后級(jí)ADC的輸入要求,解決上述問(wèn)題。圖6所示是示意電路,設(shè)計(jì)詳情可以參考TI的技術(shù)文章sbaa229:Interfacing a Differential-Output (Isolated) Amplifier to a Single-Ended Input ADC。
圖6 差分轉(zhuǎn)單端外部電路
對(duì)于提供內(nèi)置差分輸入ADC的MCU,比如C2000系列的TMS320F2837x同時(shí)提供16bit差分輸入的ADC通道和12bit單端輸入的ADC通道,可以為信號(hào)處理提供更多自由度。如果想要追求更高的精度,可以免去中間電路,直接將差分運(yùn)放的輸出接到對(duì)應(yīng)的差分輸入ADC模塊,同時(shí)獲得更好的精度和信噪比。如圖7:
圖7 AMC1311和TMS320F283777S電路示意圖
本文介紹在應(yīng)用電機(jī)驅(qū)動(dòng)器中,采用隔離運(yùn)放的系統(tǒng)架構(gòu)和TI明星產(chǎn)品。涉及了相關(guān)電路設(shè)計(jì)和外部信號(hào)調(diào)理與MCU的配合。結(jié)合后級(jí)ADC,深入討論了隔離運(yùn)放單端結(jié)構(gòu)輸出和差分結(jié)構(gòu)輸出對(duì)整體采樣性能的影響,提供了相應(yīng)的分析和建議。
總結(jié)來(lái)說(shuō),如果采用內(nèi)置差分輸入ADC的MCU,比如C2000系列的TMS320F2837x,可以免去中間電路,直接將差分運(yùn)放的輸出接到對(duì)應(yīng)的差分輸入ADC模塊,同時(shí)獲得更好的精度和信噪比;如果采用內(nèi)置單端輸入ADC的MCU,添加一顆簡(jiǎn)單運(yùn)放比如TLV6001,可以在實(shí)現(xiàn)差分轉(zhuǎn)單端的同時(shí)進(jìn)行信號(hào)調(diào)理可以更加完美地適配后級(jí)ADC的輸入要求。如果想要省去額外調(diào)理運(yùn)放,可以采用一端電阻接地,但需要考慮對(duì)于采樣準(zhǔn)確度和信噪比的不良影響。
推薦閱讀:
特別推薦
- 學(xué)子專(zhuān)區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來(lái)提高工業(yè)功能安全合規(guī)性?
- 如何通過(guò)配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車(chē)Zonal架構(gòu)的電子書(shū)
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- IGBT并聯(lián)設(shè)計(jì)指南,拿下!
- 功率器件熱設(shè)計(jì)基礎(chǔ)(十三)——使用熱系數(shù)Ψth(j-top)獲取結(jié)溫信息
- 加速度傳感器不好選型?看這6個(gè)重要參數(shù)!
- 利用創(chuàng)新FPGA技術(shù):實(shí)現(xiàn)USB解決方案的低功耗、模塊化與小尺寸
- 電子技術(shù)如何助力高鐵節(jié)能?
技術(shù)白皮書(shū)下載更多>>
- 車(chē)規(guī)與基于V2X的車(chē)輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車(chē)安全隔離的新挑戰(zhàn)
- 汽車(chē)模塊拋負(fù)載的解決方案
- 車(chē)用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門(mén)搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池