詳解多角度講解高精度 SAR ADC的抗混疊濾波考慮因素
發(fā)布時(shí)間:2018-11-01 責(zé)任編輯:lina
【導(dǎo)讀】在物聯(lián)網(wǎng)和云計(jì)算成為生活一部分,在行業(yè)媒體大肆宣揚(yáng)之際,通過采用最先進(jìn)的技術(shù)和優(yōu)化設(shè)計(jì),老式電子元件并未停止前進(jìn)的步伐。其中一個(gè)例子是模數(shù)轉(zhuǎn)換器,該器件現(xiàn)在可以超過每秒一兆次采樣(MSPS)的速率實(shí)現(xiàn)32位分辨率,輕松通過傳統(tǒng)的計(jì)量基準(zhǔn)測(cè)試。
在物聯(lián)網(wǎng)和云計(jì)算成為生活一部分,在行業(yè)媒體大肆宣揚(yáng)之際,通過采用最先進(jìn)的技術(shù)和優(yōu)化設(shè)計(jì),老式電子元件并未停止前進(jìn)的步伐。其中一個(gè)例子是模數(shù)轉(zhuǎn)換器,該器件現(xiàn)在可以超過每秒一兆次采樣(MSPS)的速率實(shí)現(xiàn)32位分辨率,輕松通過傳統(tǒng)的計(jì)量基準(zhǔn)測(cè)試。
這些高精度轉(zhuǎn)換器可以顯示高于16位的分辨率,規(guī)定可比靜態(tài)和動(dòng)態(tài)特性,并且在儀表儀器和大型通用采集系統(tǒng)(測(cè)試、設(shè)備認(rèn)證)、專業(yè)系統(tǒng)(醫(yī)療應(yīng)用和光譜學(xué)數(shù)字成像)等專用領(lǐng)域以外,它們已經(jīng)進(jìn)入許多過程控制應(yīng)用、可編程控制器、大型電機(jī)控制以及電能輸配等領(lǐng)域。目前,幾種ADC架構(gòu)在精度方面不相上下;根據(jù)不同需求,具體的選擇視模數(shù)轉(zhuǎn)換原理、逐次逼近寄存器(SAR)以及∑-Δ而定,在數(shù)MSPS速率下,這些架構(gòu)分別支持最高24位或以上的分辨率,為24位或更多,在幾百kSPS速率下支持32位分辨率。
當(dāng)面對(duì)這些分辨率和精度水平時(shí),這些轉(zhuǎn)換器提供的有用動(dòng)態(tài)范圍很容易超過100dBFS(滿量程)的神奇屏障,用戶面臨的真正挑戰(zhàn)體現(xiàn)在為要數(shù)字化的信號(hào)設(shè)計(jì)模擬調(diào)理電路,以及相關(guān)抗混疊濾波器的設(shè)計(jì)兩個(gè)方面。在過去的二十年中,采樣速率和濾波技術(shù)已經(jīng)有了很大的發(fā)展,現(xiàn)在我們可以結(jié)合運(yùn)用模擬和數(shù)字濾波器,在性能和復(fù)雜性之間達(dá)到更好的平衡。
圖1. 典型測(cè)量信號(hào)鏈
圖1所示為適用于數(shù)據(jù)采集系統(tǒng)的這類分區(qū)的一個(gè)典型示例。在調(diào)節(jié)差分或非差分信號(hào)(放大、縮放、自適應(yīng)和電平轉(zhuǎn)換等)之后,在數(shù)字化之前對(duì)后者進(jìn)行濾波以滿足奈奎斯特準(zhǔn)則。根據(jù)ADC的過采樣速率,要使用額外的數(shù)字濾波來達(dá)到采集系統(tǒng)的規(guī)格要求。
由于對(duì)超寬輸入動(dòng)態(tài)范圍的需求增加,許多上述應(yīng)用采用了最先進(jìn)的高分辨率ADC。隨著動(dòng)態(tài)范圍的增加,系統(tǒng)性能預(yù)計(jì)會(huì)提高,模擬調(diào)節(jié)鏈會(huì)減小,擁堵、能耗,甚至是材料成本都會(huì)下降。
過采樣及其好處
在超快高分辨率模數(shù)編碼器出現(xiàn)之前,一般通過以下辦法解決動(dòng)態(tài)范圍問題:使用快速可編程增益放大器、更快的比較器和/或并聯(lián)若干ADC,最后加上合適的數(shù)字處理模塊,以實(shí)現(xiàn)強(qiáng)信號(hào)的數(shù)字化,區(qū)分接近噪聲水平的小信號(hào)。在這些陳舊并且現(xiàn)已過時(shí)的架構(gòu)中,這樣做會(huì)帶來復(fù)雜的電路,很難開發(fā),并且在線性度、帶寬和采樣頻率方面都受到限制。當(dāng)今的替代方案是,借助更經(jīng)濟(jì)的現(xiàn)代ADC的高采樣速率,達(dá)到運(yùn)用過采樣技術(shù)的目的。
圖2.通過添加數(shù)字抽取濾波器比較頻譜噪聲密度
以高于奈奎斯特定理要求的最小值的FSE速率對(duì)信號(hào)進(jìn)行采樣,可以通過處理和增加編碼器的信噪比來執(zhí)行增益運(yùn)算,并因此增加有效位的數(shù)量。實(shí)際上,量化噪聲和熱噪聲被同化為白噪聲,該噪聲在整個(gè)奈奎斯特頻帶及以外均勻分布。過采樣之后,通過濾波和嚴(yán)格以最小所需采樣速率(或2×BW)限制有用頻帶,頻帶每降低一個(gè)倍頻程,噪聲能量將降低3dB,如圖2所示。換句話說,過采樣因子為4時(shí)最為理想,在理論上使信噪比增加了6dB;即是說,增加了一位,如等式1所示:
總之,過采樣有兩個(gè)優(yōu)點(diǎn),一是可以提升信噪比,二是可以放寬對(duì)位于ADC之前的抗混疊模擬濾波器的要求。
抗混疊濾波器:分區(qū)困境
理想情況下,與ADC相關(guān)的濾波器,特別是那些負(fù)責(zé)解決頻譜混疊問題的濾波器,相比其精度,其幅度響應(yīng)帶寬必須盡可能平坦,同時(shí)其帶外衰減還要能滿足其動(dòng)態(tài)范圍要求。過渡帶一般要盡可能陡。因此,這些抗混疊低通濾波器在特性上有特定的要求,必須能消除寄生鏡像、噪聲和其他雜散音。根據(jù)具體應(yīng)用,還要特別注意相位響應(yīng),也要補(bǔ)償任何過大的相移。雖然有許多建議被認(rèn)為屬于基礎(chǔ)建議,但是,如果要將這些建議與指定的24位或32位轉(zhuǎn)換器的要求結(jié)合起來,并且這些轉(zhuǎn)換器的積分非線性誤差僅為幾LSB,再加上其他類似的靜態(tài)和動(dòng)態(tài)參數(shù),有些建議實(shí)現(xiàn)起來會(huì)極其困難。
如前所述,過采樣在此非常重要,因?yàn)樗粌H能提升信噪比,還能放寬對(duì)模擬抗混疊濾波器規(guī)格及其截止頻率的要求。如圖3所示,過采樣分布在-3dB條件下截止頻率與阻帶起點(diǎn)之間的過渡帶。
圖3.過采樣分布在-3dB條件下截止頻率與阻帶起點(diǎn)之間的過渡帶
最新的技術(shù)為近年來顯著提升的高精度SAR ADC轉(zhuǎn)換速率提供了可能,目前在18位分辨率下,此等轉(zhuǎn)換速率在1MSPS與15MSPS之間。相比之下,具有同等分辨率的寬帶∑-ΔADC的速率幾乎要低一個(gè)數(shù)量級(jí),存在突出的延遲問題,并且其通帶紋波太高,無法用于數(shù)據(jù)采集系統(tǒng)、其他測(cè)量?jī)x器儀表等應(yīng)用?;径?,總體計(jì)量精度決定著后者的特性,這與靜態(tài)(dc)和動(dòng)態(tài)(ac)參數(shù)都有關(guān)系,因此這些系統(tǒng)中的轉(zhuǎn)換器和附帶的模擬調(diào)理電路在規(guī)格上必須達(dá)到頂級(jí)要求。
這些規(guī)格包括失調(diào)、增益和對(duì)應(yīng)的漂移誤差、積分非線性(INL)和差分(DNL)誤差等常見特性,還包括信噪比(SNR)、諧波失真和雜散音(無雜散動(dòng)態(tài)范圍(SFDR))。SAR ADC在部分這些參數(shù)以及瞬態(tài)響應(yīng)、模擬輸入過載和零延遲方面具有明顯的競(jìng)爭(zhēng)優(yōu)勢(shì)(INL),為單次模式下多路輸入系統(tǒng)的運(yùn)行或采集的觸發(fā)提供了保障。
相反,除LTC2512和LTC2500-32以外,大多數(shù)SAR ADC不包括數(shù)字濾波器,因此其運(yùn)行不受一些不可避免的數(shù)字低通濾波的阻礙或限制,否則,就會(huì)在計(jì)算精度、帶通紋波、衰減阻帶抑制、傳播時(shí)間和功耗之間進(jìn)行平衡。在大多數(shù)情況下,用戶無法控制這些∑-Δ轉(zhuǎn)換器的內(nèi)部濾波器系數(shù)值,不得不湊合了事。
LTC2378-20:市場(chǎng)上的首款20位SAR ADC
在對(duì)性能的角逐中,2014年,凌力爾特公司(現(xiàn)為ADI公司的一部分)向客戶推出了具有20位分辨率和真正線性度的第一款逐次逼近型ADC,將競(jìng)爭(zhēng)對(duì)手打了個(gè)措手不及。LTC2378-20是一款出色的轉(zhuǎn)換器,在接近MSPS的所有其他競(jìng)爭(zhēng)產(chǎn)品中仍然保持著自己的優(yōu)勢(shì)。
LTC2378曾經(jīng)的友敵,AD4020是ADI公司首款能以1.8MSPS速率數(shù)字化10V峰峰值差分信號(hào)的20位SAR ADC。它結(jié)合了低噪聲、低功耗以及LTC2378的所有特性:動(dòng)態(tài)壓縮、鉗位電路、電荷轉(zhuǎn)移補(bǔ)償,支持使用低功耗精密放大器(高阻抗模式)等。采用1.8V電源供電,1.8MSPS速率下,功耗僅為15mW。350ns的轉(zhuǎn)換時(shí)間創(chuàng)下紀(jì)錄,使其在延長(zhǎng)采集時(shí)間或讀取數(shù)據(jù)方面游刃有余。其采用10引腳MSOP或10引腳QFN封裝,與AD40xx家族的其他16位至18位成員相同。在–40°C至125°C溫度范圍內(nèi),其規(guī)格和運(yùn)行完全有保證。
LTC2378-20和AD4020的采樣速率分別為1MSPS和1.8MSPS,為過采樣帶來了具有重要意義的可能性,特別是音頻頻段或更高頻段。為此,必須在外部FPGA或DSP中搭載定制型抽取濾波器。如前所述,可以繞過后者,以在必要時(shí)將其延遲降至最低?;谶@些初級(jí)采樣速率值,考慮到0kHz至25kHz頻段,相應(yīng)的過采樣因子約為16或32,處理增益為12dB至18dB,同時(shí)還嚴(yán)格按照奈奎斯特定理,簡(jiǎn)化了常規(guī)操作條件下的抗混疊低通濾波器。
ADC至DSP鏈路:一切皆為串行
近年來,半導(dǎo)體行業(yè)及其設(shè)計(jì)師圈子明顯傾向于減小元件尺寸,使外殼引腳真正瘦身,并且還要調(diào)整需要與SPI總線、同步串口等連接的幾乎所有串行數(shù)字輸入或輸出。問題是,這些轉(zhuǎn)換器卻沒有留下用于抽取樣本和控制ADC的各功能選項(xiàng)的串行接口。根據(jù)其規(guī)格,這些串行接口兼容SPI或DSP串口,但實(shí)際并非如此。它們最多隱藏了負(fù)責(zé)設(shè)置時(shí)鐘信號(hào)節(jié)奏的移位寄存器,用于從器件中提取數(shù)據(jù),或者在配置期間注入數(shù)據(jù)。就如所有這些SAR ADC一樣,LTC2378-20和AD4020在頻率上要求串行時(shí)鐘(SCK)在額定采樣速率下,以20位為單位恢復(fù)數(shù)據(jù)。由于數(shù)據(jù)讀取階段嚴(yán)格限制在采集時(shí)間(約300ns)范圍以內(nèi),因此在轉(zhuǎn)換期間,必須將外部訪問時(shí)的數(shù)字活動(dòng)減至完全靜音;并且要以1MSPS的采樣速率,在分配的時(shí)間內(nèi)從采樣恢復(fù)所有位,時(shí)鐘頻率必須達(dá)到60MHz以上。無論是產(chǎn)生這樣的時(shí)鐘頻率,還是要在接收器端實(shí)現(xiàn)的時(shí)間規(guī)格,對(duì)于負(fù)責(zé)從ADC收集數(shù)據(jù)的控制器上的接口來說,這都是嚴(yán)格的限制。
LTC2378-20要求最低SCK信號(hào)頻率達(dá)到64MHz,這意味著,它不能連接任何通用微控制器或搭載最高頻率略微超過50MHz的同步串口(SPORT)的DSP,Blackfin處理器?家族的一些成員除外,如ADSP-BF533、ADSP-BF561,其速率可以達(dá)到90Mbps。因此,有人擔(dān)心,需要使用搭載了低抖動(dòng)時(shí)鐘產(chǎn)生電路相關(guān)的大型CPLD或FPGA。串行輸出SAR ADC的大多數(shù)數(shù)字接口或多或少具有相同的時(shí)序和邏輯信號(hào)模式,如圖4所示。對(duì)于SDI配置輸入,除了級(jí)聯(lián)模式之外,還對(duì)它提出了低得多的頻率要求。ADC采樣周期的等效全周期時(shí)間為
故定義最大采樣頻率,其構(gòu)成為:
其本身由輸出數(shù)據(jù)的讀取速率調(diào)理,其中,
圖4.AD4020的時(shí)序圖
幸運(yùn)的是,AD4020的轉(zhuǎn)換時(shí)間超短,為325ns,采樣速率為1MSPS,采樣時(shí)間為675ns,基于此,其串行數(shù)據(jù)讀取頻率低于33MHz,與DSP同步串口(如SHARC?ADSP-21479)相當(dāng),功耗也非常低。
一款超低功耗的多通道系統(tǒng)
出于能耗、精度和操作模式選擇靈活性的原因,同時(shí)也是出于商業(yè)考慮,在這些應(yīng)用中不能考慮基于FPGA的解決方案。要處理來自這些20位ADC的串行輸出并實(shí)現(xiàn)最優(yōu)抽取濾波器,只能使用DSP浮點(diǎn)處理器。
如今,有許多數(shù)據(jù)采集系統(tǒng)都能通過大量信道同時(shí)采樣。這就導(dǎo)致許多ADC并行運(yùn)行,同時(shí)由同一個(gè)控制器控制,該控制器還要負(fù)責(zé)收集數(shù)據(jù)并將其存儲(chǔ)在存儲(chǔ)器中以供后續(xù)分析。
運(yùn)用SHARCADSP-21479或其快速版ADSP-21469和ADSP-21489(時(shí)鐘頻率為450MHz)等高性能SAR ADC構(gòu)建的系統(tǒng)不但現(xiàn)實(shí)可行,而且在性能、開發(fā)時(shí)間、能耗和緊湊性等方面也是可圈可點(diǎn)。這些處理器具有支持8個(gè)模數(shù)數(shù)字化通道所需要的全部功能和外設(shè),包括同步串行接口、不同時(shí)鐘信號(hào)的發(fā)生以及觸發(fā)轉(zhuǎn)換等。在所有SHARC處理器中,ADSP-21479是唯一一款采用低泄漏65納米CMOS工藝制造的32/40位浮點(diǎn)DSP,其優(yōu)勢(shì)是能大幅降低泄漏或靜態(tài)電流,并且其結(jié)溫幾乎呈指數(shù)級(jí)演進(jìn)。作為處理器及其外設(shè)頻率和活動(dòng)函數(shù)的動(dòng)態(tài)電流也低于以標(biāo)準(zhǔn)或快速CMOS工藝制造的處理器。不足之處則在于,相比常規(guī)版本,其最大CPU頻率下降了約30%-40%,但仍然足以滿足此類應(yīng)用的需求。
ADSP-21479搭載了多種外設(shè),其中有一個(gè)特殊模塊被稱為串行輸入端口(SIP),該模塊能同時(shí)從同步運(yùn)行的8個(gè)外部串口發(fā)射器接收信號(hào)流以及時(shí)鐘和同步信號(hào)。事實(shí)上,可以將與AD4020類似的8個(gè)ADC直接接入該接口,從而接入處理器。如圖5所示,8個(gè)通道有自己的IDP_SCK時(shí)鐘、IDP_FS同步和IDP_DAT輸入信號(hào),一旦解串行,它們的數(shù)據(jù)會(huì)自動(dòng)復(fù)用到32位、8字FIFO存儲(chǔ)器中,然后通過64位DMA數(shù)據(jù)包或CPU執(zhí)行的讀取操作,傳輸?shù)絊HARC內(nèi)部RAM。DMA傳輸操作中,SIP由運(yùn)行于自動(dòng)乒乓模式下的雙索引DMA通道伺服。此外,ADSP-21479還搭載有四個(gè)精密時(shí)鐘發(fā)生器(用于低抖動(dòng),縮寫為PCG),能夠從內(nèi)部或外部源(TCXO)生成獨(dú)立的時(shí)鐘和同步信號(hào)對(duì)。通過編程20位內(nèi)部分頻器可取得這些激勵(lì)的頻率、周期、脈沖寬度和相位。每個(gè)PCGx生成單元提供由一對(duì)AD4020轉(zhuǎn)換器共享的一對(duì)CLK/FS信號(hào),但在轉(zhuǎn)換階段時(shí)鐘必須靜音,所以需要一個(gè)邏輯門,以便把IDP_FS信號(hào)和IDP_SCK信號(hào)結(jié)合起來形成SCK時(shí)鐘。
圖5.通過解串行將8個(gè)20位1MSPSSAR ADC接入SHARC DSP;DMA數(shù)據(jù)傳輸進(jìn)DSP內(nèi)部RAM
圖5中的時(shí)序圖顯示,一旦轉(zhuǎn)換時(shí)間tconv已經(jīng)過去,必須盡可能快地以33.3MHz的速率,從當(dāng)前樣本中讀取20位數(shù)據(jù),以在采樣頻率中維持1MSPS的神奇屏障。大約600ns后,數(shù)據(jù)被傳輸?shù)狡渲幸粋€(gè)SIP緩沖器中,此時(shí)可以使用IDP_FS或CNV信號(hào)啟動(dòng)新的轉(zhuǎn)換周期,使AD4020進(jìn)行新的轉(zhuǎn)換操作。使后者的最大轉(zhuǎn)換時(shí)間達(dá)到325ns,這對(duì)應(yīng)于CNV信號(hào)的脈沖寬度,即12個(gè)IDP_SCK時(shí)鐘周期或360ns。總之,如圖5中的時(shí)序圖所示,一個(gè)完整的掃描周期需要32個(gè)IDP_SCK信號(hào)周期,總時(shí)間為960ns,因此其最大采樣速率為1.040MSPS。
表1.不同SAR ADC與DSP相比的情況對(duì)比
同樣,ADCLTC2378-20可以與ADSP-21489相關(guān)聯(lián),因?yàn)樗軌蛟诟哌_(dá)50MHz的外設(shè)時(shí)鐘頻率下工作,在這種情況下,采樣速率為900kSPS,如表1所示。遺憾的是,靜態(tài)電源電流(Iddint)或后者的泄漏電流遠(yuǎn)高于動(dòng)態(tài)電流,使得該配置的總功耗超過可用功率,達(dá)到不可接受的程度。
抽取濾波
假設(shè)將這些轉(zhuǎn)換器用于過采樣模式,如此,就有必要提供一個(gè)能滿足上述要求且針對(duì)目標(biāo)頻帶定制的抽取濾波器,在所需計(jì)算能力和功耗方面盡量降低對(duì)DSP的影響。目前,用于改變采樣速率的程序已經(jīng)成為一種標(biāo)準(zhǔn)的數(shù)字信號(hào)處理操作,可以用內(nèi)插器和數(shù)字抽取器實(shí)現(xiàn)。出于相位響應(yīng)線性度考慮,低通抽取濾波器采用有限脈沖響應(yīng)(FIR)拓?fù)浣Y(jié)構(gòu),可以根據(jù)效率要求采用不同的拓?fù)浣Y(jié)構(gòu):
● 抽取專用直接或優(yōu)化FIR濾波器
● 級(jí)聯(lián)多速率FIR濾波器(1/2頻段)
● 多相FIR濾波器
無論是FIR還是IIR類型的多相濾波器都是抽取或插值濾波器最有效的實(shí)現(xiàn)方案之一。然而,傳統(tǒng)數(shù)字處理方案要求在抽取之前進(jìn)行濾波。在此假設(shè)下,1/M抽取濾波器由低通濾波器和緊隨其后的采樣頻率降級(jí)組成(圖6a)。預(yù)先對(duì)信號(hào)濾波,避免頻譜混疊,然后以M-1的速率定期消除樣本。然而,常規(guī)FIR或其他結(jié)構(gòu)針對(duì)這些抽取濾波器的直接實(shí)現(xiàn)方案存在資源浪費(fèi)問題,因?yàn)楸痪軜颖臼菐资踔翈装俅卫鄢?MAC)的結(jié)果。使用分解成若干濾波器組的多相濾波器或是針對(duì)抽取進(jìn)行優(yōu)化的濾波器,可以基于某些特點(diǎn)(如圖6b所示)形成高效的濾波器。
圖6a和6b.常規(guī)抽取濾波器和采用多相方案的抽取濾波器
憑借FIR濾波專用SIMD架構(gòu)和硬件加速器,以及針對(duì)數(shù)字信號(hào)處理而優(yōu)化的指令集,SHARCADSP-21479特別適合實(shí)現(xiàn)這些類型的濾波器。每個(gè)SHARC處理單元都有一個(gè)32/40位乘法器累加器,能夠在266MHz的CPU頻率下,每秒實(shí)現(xiàn)533次定點(diǎn)或浮點(diǎn)MAC計(jì)算。然而,對(duì)于一些存在顯著延遲(房間均衡或音效)的應(yīng)用,需要增加計(jì)算能力,使內(nèi)核從諸如FIR、IIR、FFT濾波等密集和持續(xù)乘法運(yùn)算中解脫出來,用專門的硬件加速器去執(zhí)行這些運(yùn)算。如此,用戶就能完全自主決定,將CPU用于計(jì)算需要執(zhí)行復(fù)雜搜集的復(fù)雜算法。FIR濾波專用加速器有專門的本地存儲(chǔ)器,用于存儲(chǔ)數(shù)據(jù)和系數(shù),并具有以下特征:
● 支持IEEE-754定點(diǎn)或浮點(diǎn)32位算術(shù)格式?
● 有四個(gè)并行運(yùn)行的累乘單元?
● 支持單速率和多速率處理模式(抽取或插值)?
● 一次簡(jiǎn)單迭代可以處理最多32個(gè)FIR濾波器,總共多達(dá)1024個(gè)系數(shù)
ADSP-21479的加速器的時(shí)鐘速率與系統(tǒng)時(shí)鐘或PCLK外設(shè)的速率相同,為CPUCCLK時(shí)鐘頻率的一半;即133MHz?;诖?,其總計(jì)算能力為533MAC/秒。加速器不要求執(zhí)行指令;其運(yùn)算由特定寄存器的配置決定,并且完全依靠DMA傳輸在內(nèi)部和/或外部存儲(chǔ)器之間移動(dòng)數(shù)據(jù)。
顯然,該加速器能以最優(yōu)方式執(zhí)行多速率濾波器的實(shí)現(xiàn)方案(插值或抽取)。由于簡(jiǎn)單的抽取濾波器僅為M個(gè)輸入信號(hào)提供一個(gè)輸出結(jié)果,因此,輸出速率比輸入速率低1/M倍。這種優(yōu)化型FIR濾波器的實(shí)現(xiàn)方案沒有采用復(fù)雜的多相濾波器組,因?yàn)楹笳咝枰罅康拇鎯?chǔ)器指針,實(shí)現(xiàn)起來非常復(fù)雜;相反,該方案只是把M-1個(gè)樣本的輸出擱置起來,避免執(zhí)行這些計(jì)算,并且只計(jì)算能產(chǎn)生有用樣本的數(shù)據(jù)。這就消除了浪費(fèi),結(jié)果,運(yùn)算次數(shù)以M-1的比率減少——在本例中為15——從而大大地節(jié)省了CPU周期。然而,在這樣的抽取速率和如此短的計(jì)算窗口下,加速器不如有兩個(gè)計(jì)算單元的內(nèi)核有效,并且在信號(hào)從一個(gè)過濾器傳到另一個(gè)過濾器的過程中,其DMA通道因被重新編程會(huì)造成不利影響。如果在SISD模式下用一個(gè)計(jì)算單元實(shí)現(xiàn),則這類濾波器在CCLK周期數(shù)方面的成本可表示為:
N為濾波器的系數(shù)的個(gè)數(shù),M為抽取速率。
對(duì)于這種抽取濾波器一次迭代的實(shí)現(xiàn)成本,F(xiàn)IR濾波器條件下約為150個(gè)周期(源到匯編器21k),在0kHz至24kHz頻段,紋波規(guī)格為±0.00001dB,在62,500SPS采樣速率下,帶外衰減為-130dB。這款濾波器有97個(gè)系數(shù)(以32位FPIEEE-754格式量化),其響應(yīng)如圖7所示,該圖是用MATLAB?FilterDesigner制成的。對(duì)于接入的SIP或ADC的每個(gè)活動(dòng)通道,響應(yīng)以該采樣頻率在DMA中斷實(shí)例中重復(fù)出現(xiàn)。
圖7.抽取濾波器的濾波器響應(yīng)
對(duì)于實(shí)時(shí)和DSP負(fù)載,濾波操作以62.5kSPS的頻率重復(fù),代表9,375,053個(gè)CCLK周期,而8個(gè)ADC轉(zhuǎn)換通道的重復(fù)頻率則略多于8倍,因?yàn)槊總€(gè)濾波器的存儲(chǔ)器指針值都存儲(chǔ)在SHARC數(shù)據(jù)地址生成器中,可以實(shí)現(xiàn)快速保存和恢復(fù)。這相當(dāng)于,在SISD模式下,一個(gè)SHARCDSP為每秒8000萬個(gè)執(zhí)行周期(或80MIPS),在SIMD模式下,由于兩個(gè)處理單元并行運(yùn)行,則為該值的一半。在前述兩種模式下,這8個(gè)抽取器FIR濾波器在執(zhí)行時(shí),分別以30%和15%的速率以及266MHz的時(shí)鐘頻率占用ADSP-21479。
功耗
雖然轉(zhuǎn)換器的功耗可以從其規(guī)格中輕松、準(zhǔn)確地推算出來,但處理器的功耗則要困難得多,因?yàn)樘幚砥鞴牡挠?jì)算公式涉及多個(gè)參數(shù),并且實(shí)時(shí)條件和工作模式會(huì)對(duì)其造成極大的影響。這里雖然沒有詳細(xì)說明,但讀者可以在相關(guān)技術(shù)筆記中,輕松找到與ADSP-214xx和ADSP-21479處理器各組件功耗估算相關(guān)的說明,其中考慮了功能模塊的活動(dòng)、靜態(tài)電流結(jié)溫、電源電壓值、使用的輸入輸出引腳數(shù)、各種外部頻率和容性負(fù)載。
依據(jù)圖5中的功能描述,針對(duì)DSP和ADC的若干組合,給出了與DSP在這類抽取濾波應(yīng)用中活動(dòng)情況相對(duì)應(yīng)的功耗。對(duì)于這些搭載四個(gè)或八個(gè)ADC的相關(guān)DSP變體,需要根據(jù)功能容量、輸入/輸出的數(shù)量、處理器的計(jì)算能力以及ADC的整體性能確定其功耗。
憑借超低的靜態(tài)電流,以ADSP-21479及其八個(gè)SAR ADC集群為核心構(gòu)建的解決方案不但是功耗最低的解決方案,同時(shí)提供豐富的濾波算法選擇和其他數(shù)字功能,在整體性能方面也是出類拔萃。
這個(gè)多通道數(shù)據(jù)采集系統(tǒng)(DAQ)的例子同時(shí)證明,實(shí)施數(shù)字信號(hào)處理任務(wù)不一定要使用FPGA,浮點(diǎn)DSP更適合高精度SAR ADC,尤其是在高度關(guān)注功耗的情況下。
表1. 不同SAR ADC與DSP相比的情況對(duì)比
特別推薦
- 學(xué)子專區(qū) - ADALM2000實(shí)驗(yàn):多相濾波電路
- 如何使用高性能監(jiān)控電路來提高工業(yè)功能安全合規(guī)性?
- 如何通過配置控制器優(yōu)化CAN總線系統(tǒng)性能
- PCI Express Gen5:自動(dòng)化多通道測(cè)試
- 貿(mào)澤與TE Connectivity 和Microchip Technology聯(lián)手推出聚焦汽車Zonal架構(gòu)的電子書
- 賀利氏燒結(jié)銀在功率模塊中的應(yīng)用
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
技術(shù)文章更多>>
- 探索新能源汽車“芯”動(dòng)力:盡在2025廣州國(guó)際新能源汽車功率半導(dǎo)體技術(shù)展
- 不容錯(cuò)過的汽車電子盛會(huì)︱AUTO TECH China 2025第十二屆廣州國(guó)際汽車電子技術(shù)博覽會(huì)
- 基于 SiC 的三相電機(jī)驅(qū)動(dòng)開發(fā)和驗(yàn)證套件
- 自主移動(dòng)機(jī)器人設(shè)計(jì)指南,看完秒懂
- AI不斷升級(jí),SSD如何扮演關(guān)鍵角色
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
控制變壓器
控制模塊
藍(lán)牙
藍(lán)牙4.0
藍(lán)牙模塊
浪涌保護(hù)器
雷度電子
鋰電池
利爾達(dá)
連接器
流量單位
漏電保護(hù)器
濾波電感
濾波器
路由器設(shè)置
鋁電解電容
鋁殼電阻
邏輯IC
馬達(dá)控制
麥克風(fēng)
脈沖變壓器
鉚接設(shè)備
夢(mèng)想電子
模擬鎖相環(huán)
耐壓測(cè)試儀
逆變器
逆導(dǎo)可控硅
鎳鎘電池
鎳氫電池
紐扣電池