無論LED是經(jīng)由降壓、升壓、降壓/升壓或線性穩(wěn)壓器驅(qū)動(dòng),連接每一個(gè)驅(qū)動(dòng)電路最常見的線程就是須要控制光的輸出。現(xiàn)今僅有很少數(shù)的應(yīng)用只需要開和關(guān)的簡(jiǎn)單功能,絕大多數(shù)都需要從0~100%去微調(diào)亮度。目前,針對(duì)亮度控制方面,主要的兩種解決方案為線性調(diào)節(jié)LED的電流(模擬調(diào)光)或在肉眼無法察覺的高頻下,讓驅(qū)動(dòng)電流從0到目標(biāo)電流值之間來回切換(數(shù)字調(diào)光)。利用脈沖寬度調(diào)變(PWM)來設(shè)定循環(huán)和工作周期可能是實(shí)現(xiàn)數(shù)字調(diào)光的最簡(jiǎn)單的方法,原因是相同的技術(shù)可以用來控制大部分的開關(guān)轉(zhuǎn)換器。
PWM調(diào)光能調(diào)配準(zhǔn)確色光
一般來說,模擬調(diào)光比較容易實(shí)行,這是因?yàn)長(zhǎng)ED驅(qū)動(dòng)器的輸出電流變化與控制電壓成比例,而且模擬調(diào)光也不會(huì)引發(fā)額外的電磁兼容性(EMC)/電磁干擾(EMI)潛在頻率問題。然而,大部分設(shè)計(jì)采用PWM調(diào)光的理由都是基于LED的基本特性,即放射光的位移是與平均驅(qū)動(dòng)電流的大小成比例(圖1)。對(duì)于單色LED來說,主要光波的波長(zhǎng)會(huì)發(fā)生變化,而在白光LED方面,出現(xiàn)變化的是相對(duì)色溫(CCT)。對(duì)于人們的肉眼來說,很難察覺出紅、綠或藍(lán)光LED中的奈米波長(zhǎng)變化,尤其是當(dāng)光的強(qiáng)度也同樣在改變,但是白光的色溫變化則比較容易察覺出來。
大多數(shù)的白光LED都包含一片可放射出藍(lán)光頻譜光子的晶圓,這些光子在撞擊磷光涂層后便會(huì)放射出各種可見光范圍內(nèi)的光子。在較小的電流下,磷光會(huì)成為主導(dǎo)并使光線偏向黃色;而在較大電流下,LED放射出來的藍(lán)光則較多,使得光線偏向藍(lán)色,同時(shí)也會(huì)產(chǎn)生較高的CCT。對(duì)于使用超過一個(gè)白光LED的應(yīng)用,在兩個(gè)相鄰LED之間出現(xiàn)的CCT差異會(huì)很明顯,且視覺令人不悅,此概念可以進(jìn)一步延伸將多個(gè)單色LED光線混和在一起的光源。一旦超過一個(gè)光源,任何出現(xiàn)在它們之間的CCT差異都會(huì)令人感到刺眼。
LED制造商會(huì)在其產(chǎn)品的電流特性表中指定驅(qū)動(dòng)電流的大小,其只會(huì)在這些特定電流條件下對(duì)產(chǎn)品的主波長(zhǎng)或CCT提供保證。PWM調(diào)光的優(yōu)點(diǎn)在于完全毋須考慮光的強(qiáng)弱,也能確保LED放射出設(shè)計(jì)人員所需的顏色。這種精確的控制對(duì)于紅綠藍(lán)(RGB)應(yīng)用尤其重要,因?yàn)檫@些應(yīng)用是將不同顏色的光線混和以產(chǎn)生白光。
從驅(qū)動(dòng)器集成電路的角度看,模擬調(diào)光面臨著輸出電流準(zhǔn)確性的嚴(yán)峻挑戰(zhàn)。幾乎所有的LED驅(qū)動(dòng)器都在輸出端加入某種形式的串行電阻來偵測(cè)電流,而所選用的電流感測(cè)電壓VSNS會(huì)產(chǎn)生一個(gè)協(xié)調(diào)作用,使電路能保持高信號(hào)信噪比(SNR),同時(shí)維持低功耗,由驅(qū)動(dòng)器中的容限度、偏移和延遲所引致的誤差則相對(duì)保持固定。要在封閉回路系統(tǒng)中降低輸出電流,就必須要調(diào)降VSNS,但如此一來,輸出電流的準(zhǔn)確性便會(huì)下降,直至VSNS的絕對(duì)值等于誤差電壓為止,最后,輸出電流會(huì)變得無法控制,目標(biāo)輸出電流將不能被確定或保證。一般來說,PWM調(diào)光除了可以提高準(zhǔn)確性之外,對(duì)于低階光輸出的線性控制也較模擬調(diào)光強(qiáng)。
[page]
調(diào)光頻率與對(duì)比度成反比
對(duì)于PWM調(diào)光信號(hào)而言,每個(gè)LED都有限定的響應(yīng)時(shí)間,圖2表示三種不同的延遲,延遲愈大者表示能達(dá)到的對(duì)比度就愈低(對(duì)光強(qiáng)度控制的一種測(cè)量方法)。
機(jī)械視覺辨識(shí)和工業(yè)檢驗(yàn)等應(yīng)用通常都需要較高的PWM調(diào)光頻率,主因?yàn)楦咚贁z影機(jī)和傳感器的反應(yīng)速度比人類眼睛快很多。在這類應(yīng)用中,對(duì)于LED光源進(jìn)行高速開和關(guān)的目的不是要降低平均的光輸出量,而是要將光輸出與傳感器或攝影機(jī)的捕捉時(shí)間進(jìn)行同步化。
利用開關(guān)穩(wěn)壓器來調(diào)光
為了達(dá)到每秒開關(guān)數(shù)百次或甚至數(shù)千次,以開關(guān)穩(wěn)壓器為基礎(chǔ)的LED驅(qū)動(dòng)器,須經(jīng)過特別的設(shè)計(jì)考慮。針對(duì)標(biāo)準(zhǔn)電源供應(yīng)而設(shè)計(jì)的穩(wěn)壓器一般都會(huì)設(shè)計(jì)一根“啟動(dòng)”或關(guān)閉接腳,以便供邏輯PWM信號(hào)使用,但連帶的延遲tD則頗長(zhǎng),這是由于硅芯片的設(shè)計(jì)強(qiáng)調(diào)在響應(yīng)時(shí)間內(nèi)維持低停機(jī)電流。然而,專用來驅(qū)動(dòng)LED的開關(guān)穩(wěn)壓器則恰好相反,它可在「啟動(dòng)」接腳邏輯低時(shí),保持內(nèi)部控制電路的活動(dòng),以將tD減至最低,而當(dāng)LED被關(guān)關(guān)時(shí),則會(huì)面臨較大工作電流的困擾。
在使用PWM來達(dá)成光控制優(yōu)化時(shí),要把轉(zhuǎn)上(Slew-up)和轉(zhuǎn)下(Slew-down)延遲維持在最低,這不單為了獲得最佳的對(duì)比度,而且還可減少LED花在由0到目標(biāo)所需的時(shí)間。(在此條件下,并不保證主波長(zhǎng)或CCT與目標(biāo)值相同)在這里的標(biāo)準(zhǔn)開關(guān)穩(wěn)壓器將設(shè)有一個(gè)軟啟動(dòng),通常也搭配一個(gè)軟關(guān)閉,而專用的LED驅(qū)動(dòng)器會(huì)在其控制之內(nèi)執(zhí)行所有工作以減少這些回轉(zhuǎn)率(Slew Rate)。要降低tSU和tSD,須要同時(shí)從硅芯片的設(shè)計(jì)和開關(guān)穩(wěn)壓器所采用的拓?fù)渲帧?br />
具備較快速回轉(zhuǎn)率的降壓穩(wěn)壓器,比其他所有的開關(guān)拓?fù)浣Y(jié)構(gòu)在兩個(gè)地方表現(xiàn)更為優(yōu)異,首先降壓穩(wěn)壓器是唯一可在控制開關(guān)啟動(dòng)時(shí),將功率輸送到輸出端的開關(guān)轉(zhuǎn)換器,此特點(diǎn)使得電壓模式或電流模式PWM(這里不要與PWM調(diào)光混淆)的降壓穩(wěn)壓器之控制回路,比起升壓穩(wěn)壓器或其他降壓/升壓拓?fù)涓鼮榭焖?。此外,在控制開關(guān)啟動(dòng)期間的功率傳輸能夠輕易改為磁滯控制,使其速度甚至比最佳的電壓模式或電流模式控制的回路更快。
其次,降壓穩(wěn)壓器的電感器在整個(gè)開關(guān)周期內(nèi)都是連接在輸出端,此可確保輸出電流的連續(xù)性,也意謂毋須使用輸出電容器。少了輸出電容器后,降壓穩(wěn)壓器便可成為真正的高阻抗電流源,能夠迅速轉(zhuǎn)換輸出電壓。邱克型(Cuk)和Zeta轉(zhuǎn)換器雖可提供連續(xù)性輸出電感器,但由于它們的控制回路較慢,效率也較低,因此并非最佳選擇。
[page]
PWM比“啟動(dòng)”接腳更快
即使是一個(gè)沒有輸出電容器的純磁滯降壓穩(wěn)壓器,都不足以應(yīng)付某些PWM調(diào)光系統(tǒng)的要求,這些應(yīng)用需要較高的PWM調(diào)光頻率、高對(duì)比度度,也就是要求更快速的回轉(zhuǎn)率和更短暫的延遲時(shí)間。與機(jī)械視覺辨識(shí)和工業(yè)檢驗(yàn)系統(tǒng)搭配應(yīng)用時(shí),舉例某些要求高性能的系統(tǒng),包括液晶(LCD)面板和投影機(jī)的背光照明系統(tǒng),在某些情況下,PWM調(diào)光頻率必須被調(diào)高到可聽頻帶以外的25kHz或更高的頻帶,隨著整體的調(diào)光周期已縮短至幾微秒內(nèi),包括傳導(dǎo)延遲在內(nèi),LED電流的上升和下降時(shí)間總和必須縮短至奈秒內(nèi)。
從一個(gè)沒有輸出電容器的快速降壓穩(wěn)壓器著手,出現(xiàn)在輸出電流開啟和關(guān)閉的延遲,是來自集成電路本身的傳導(dǎo)延遲和輸出電感器的物理特性。若要達(dá)到真正高速的PWM調(diào)光,兩個(gè)延遲都須被略過(By Pass)。要實(shí)現(xiàn)這個(gè)目標(biāo),最佳方法就是采用一個(gè)與LED并聯(lián)的電源開關(guān)(圖3)。當(dāng)LED關(guān)閉時(shí),驅(qū)動(dòng)電流便會(huì)分流通過開關(guān),作用就如同一個(gè)典型的N型金屬氧化半導(dǎo)體場(chǎng)效晶體管(N-MOSFET),這時(shí)集成電路會(huì)繼續(xù)運(yùn)行,而電感器電流也會(huì)持續(xù)流動(dòng)。該方法的最大缺點(diǎn)在于LED關(guān)閉時(shí),即使期間的輸出電壓下降到與電流感測(cè)電壓相同,仍會(huì)浪費(fèi)功率。
利用分路場(chǎng)效應(yīng)晶體管(FET)來進(jìn)行調(diào)光會(huì)導(dǎo)致輸出電壓出現(xiàn)較為急劇的移位,這使得集成電路的控制回路必須作出響應(yīng),以嘗試維持輸出電流的穩(wěn)定。正如同邏輯接腳調(diào)光般,控制回路愈快表示響應(yīng)愈好,而采用磁滯控制的降壓穩(wěn)壓器則可提供最佳的回應(yīng)。
利用升壓和降壓/升壓 實(shí)現(xiàn)快速的PWM調(diào)光
無論是升壓穩(wěn)壓器或任何類型的降壓/升壓拓?fù)涠疾惶m合用在PWM調(diào)光。在開始設(shè)計(jì)的時(shí)候,會(huì)發(fā)覺兩者在連續(xù)導(dǎo)通模式(CCM)下都會(huì)展現(xiàn)一個(gè)右半平面零點(diǎn)(Right-half Plane Zero)限制,這將無法達(dá)到頻率穩(wěn)壓器所需的高控制回路帶寬要求。此外,右半平面零點(diǎn)的時(shí)域效應(yīng)還會(huì)使系統(tǒng)難以磁滯方式去控制升壓或降壓/升壓電路;另一個(gè)使情況變得更為復(fù)雜的因素是升壓穩(wěn)壓器不能容忍輸出電壓下降到輸入電壓以下,這種情況會(huì)導(dǎo)致在輸入端產(chǎn)生短路,使得并列FET調(diào)光無法實(shí)行。另外,在各類的降壓/升壓拓?fù)浼夹g(shù)中,并列FET調(diào)光仍然窒礙難行或極難使用,主因在于它需要輸出電容器(SEPIC、降壓/升壓和返馳式),又或在輸出短路時(shí)會(huì)出現(xiàn)無法控制的輸入電感器電流(Cuk和Zeta)。
假如真的需要一個(gè)快速的PWM調(diào)光,最佳的解決方案是采用兩級(jí)系統(tǒng),并以降壓穩(wěn)壓器作為第二級(jí)LED驅(qū)動(dòng)級(jí)。不過,若尺寸空間和成本都不容許,退而求其次的最佳選擇便是圖4中的串行開關(guān)。
雖然LED電流可在瞬間關(guān)閉,但須仔細(xì)考慮系統(tǒng)的響應(yīng),這種開放電路其實(shí)可看成一個(gè)快速的極端卸除瞬時(shí),它還會(huì)中斷回饋回路并導(dǎo)致穩(wěn)壓器的輸出電壓無止境上升。因此,須要在輸出和/或誤差放大器加入箝位電路,以預(yù)防超載電壓所造成的損害,但由于這些箝位電路難以用外部電路的方式實(shí)現(xiàn),也就是說串行式FET調(diào)光必須配合專用升壓與降壓/升壓LED驅(qū)動(dòng)器集成電路才可使用。
要有效控制LED光源,必須在開始時(shí)的設(shè)計(jì)過程就加倍小心,光源愈是精密,須要采用PWM調(diào)光的機(jī)會(huì)就愈大,而系統(tǒng)設(shè)計(jì)人員也必須謹(jǐn)慎考慮有關(guān)LED驅(qū)動(dòng)器的拓?fù)浣Y(jié)構(gòu)問題。降壓穩(wěn)壓器對(duì)PWM調(diào)光有很多優(yōu)點(diǎn),設(shè)計(jì)人員必須慎重考慮輸入電壓和LED的排列位置。假如調(diào)光頻率要求更高,回轉(zhuǎn)率便要更快,如此可更輕易在設(shè)計(jì)過程的初期改用降壓穩(wěn)壓器來實(shí)行。
相關(guān)閱讀:
解決LED調(diào)光電源的技術(shù)任你選擇!
驅(qū)動(dòng)降20+元件,成本無壓力的LED調(diào)光設(shè)計(jì)送給你
經(jīng)典的LED調(diào)光技術(shù),均勻調(diào)整LED亮度的利器