MEMS紅外傳感器通常與一個(gè)專用集成電路(ASIC)電連接,用于控制傳感器并放大輸出信號(hào),因此,我們?cè)u(píng)測了一個(gè)系統(tǒng)級(jí)封裝的紅外傳感器。為了確保入射紅外輻射到達(dá)傳感器感光面積,避免可見光閃光燈引起的輻射噪聲,針對(duì)選定的應(yīng)用,我們?cè)谙到y(tǒng)級(jí)封裝上集成一個(gè)?> 5.5µm的紅外波長可選長通濾光片。
在存在檢測傳感器系統(tǒng)要求的波長范圍內(nèi),紅外長通濾光片引起的總損耗被控制在大約20%以內(nèi),對(duì)于一些主要用途,例如,在一個(gè)設(shè)備PCB板上安裝存在檢測傳感器或紅外測溫傳感器,這個(gè)量級(jí)的能量損耗被認(rèn)為是很有限的。對(duì)于未來的其它潛在應(yīng)用,所討論的干涉濾光片將換成透射光譜不同的濾光片。
圖2:封裝上表面集成的長通紅外濾光片的透射光譜
本文所討論的封裝采用一個(gè)通常兩面集成干擾層的硅基濾光片,也可以選擇安裝不同類型的濾光片,以適應(yīng)不同的應(yīng)用需求,例如,NDIR光譜儀。
圖3:MEMS紅外傳感器和ASIC的封裝布局
該紅外傳感器封裝的設(shè)計(jì)和開發(fā)采用常見的并列布局,傳感器和ASIC在封裝內(nèi)是并排放置(圖3)。
在封裝上表面集成一個(gè)光學(xué)窗口,用于選擇紅外輻射的波長成分,這種光窗解決方案可以防止環(huán)境光輻射到達(dá)探測器感光區(qū),從而降低總系統(tǒng)噪聲。構(gòu)成封裝上表面和腔壁的聚合物可以視為對(duì)可見光-紅外輻射完全不透明,可歸類為LCP材料(液晶高分子聚合物)。不同的應(yīng)用可以安裝不同的濾光片,例如,NDIR光譜儀。如圖3所示,結(jié)構(gòu)元件包括兩個(gè)裸片和鍵合引線,傳感器和信號(hào)處理電路互連,然后在連接到封裝襯底上。
圖4:“小紅外光窗”封裝和“一體式紅外濾光封帽”封裝的渲染圖
實(shí)驗(yàn)裝置和測量
對(duì)MEMS紅外傳感器光電特性進(jìn)行表征實(shí)驗(yàn),被測目標(biāo)物體是一個(gè)-20°C至160°C的校準(zhǔn)黑體輻射源。所用的黑體輻射源是CI Systems公司的SR-800R 4D/A,其面積是4 x 4平方英寸,輻射率為0.99。在表征實(shí)驗(yàn)過程中,傳感器放置在距黑體表面5.0 cm處,以便完全覆蓋傳感器視野范圍。
圖5:實(shí)驗(yàn)裝置
使用和不用濾光片各采集數(shù)據(jù)一次,觀測到信噪比分別為1.6和2.36。在使用濾光片時(shí),采樣信噪比降低,這是濾光片的光衰減所致,并且完全符合圖2的頻譜。
圖6:帶和不帶紅外濾光片的陶瓷封裝傳感器靈敏度表征。
系統(tǒng)輸出是數(shù)字信號(hào),在紅外輻射下,最低有效位(lsb)的數(shù)字變化代表系統(tǒng)輸出變化。在封裝幾何尺寸確定并確保黑體完全覆蓋光窗視野的條件下,被測傳感器的總靈敏度約為2000lsb/°C,在150lsb發(fā)現(xiàn)噪聲。紅外長通濾光片可以選擇,主要是為了匹配預(yù)期的檢測選擇性和光窗前可探測物體的性質(zhì)和尺寸。
圖7:有紅外硅基濾光片的封裝的3D-X射線斷層掃描圖像,其中濾光片有M1和M2兩層金屬反射膜
如圖7所示,在MEMS紅外傳感器上面放置M1和M2兩層金屬紅外濾光膜,用于過濾封裝表面上的入射輻射。在3D圖像中還能看到傳感器和ASIC互連的引線鍵合結(jié)構(gòu)和封裝襯底金屬走線。
視野(FOV)角度計(jì)算
我們通常給光學(xué)系統(tǒng)定義一個(gè)視野(FOV)參數(shù),用于評(píng)估感測系統(tǒng)能夠檢測的幾何空間大小。任何光學(xué)設(shè)備都可以定義為FOV = ±θ的半視野(HFOV)或FOV = θ的全視野(FFOV)。本文采用FOV = ±θ的半視野定義。在幾何空間評(píng)測中,假設(shè)硅折射率n = 3.44;空氣和真空折射率n = 1。下圖所示是所討論封裝的截面結(jié)構(gòu)的FOV計(jì)算方法。
圖8:FOV計(jì)算原理截面圖
在計(jì)算視野角度時(shí),需要考慮光線穿過窗口時(shí)發(fā)生的折射(或彎曲)情況。
運(yùn)用三角學(xué)的基本關(guān)系,我們發(fā)現(xiàn):
WO = WA + 2 (Wt1+Wh1)(eq. 1)
其中WO是封裝光窗的寬度,WA是傳感器感光區(qū)的寬度,Wt1+Wh1是空氣和硅中的光路寬度,計(jì)算方法見下面的等式組:
Wt1 = t1?tg?S; (eq. 2a)
Wh1 = h1?tg?A;(eq. 2b)
其中,t1和h1是封裝和器件本身的幾何垂直參數(shù),?A 和 ?S分別是紅外線在空氣和硅中的傳播角度。 根據(jù)斯涅爾定律,下面的等式給出了兩個(gè)角度的關(guān)系:
n1.sin (θ1) = n2.sin (θ2)(eq. 3)
n1和n2表示每種材料的折射率,θ1和θ2是光線在每種材料中傳播與表面法線形成的夾角(逆時(shí)針方向),并假設(shè)硅的折射率n = 3.44,空氣/真空的折射率n = 1?;谏鲜鰩缀渭僭O(shè),預(yù)期視野角度FFOV = 80°- 82°。然后開始腔體封裝的初步設(shè)計(jì),并在封裝試生產(chǎn)線實(shí)驗(yàn)室中制造了兩個(gè)批次的原型。為了獲得不同的FFOV,我們提出了兩種不同的窗口設(shè)計(jì)。為了在1.0um -13.0um波長范圍內(nèi),驗(yàn)證封裝腔壁材料的“ T%= 0”條件,做了模塑樹脂材料的紅外透光值測試。封裝結(jié)構(gòu)是系統(tǒng)級(jí)封裝,其中ASIC裸片與MEMS紅外傳感器并排放置,裸片間通過引線鍵合(WB)連接,如下圖所示。
圖9:帶紅外光窗封裝(左圖)和一體式紅外濾光封裝(右圖),通過表面貼裝技術(shù)(SMT)焊接在DIL 24測試板上
使用前述的黑體輻射源,在距封裝頂部22cm處,對(duì)上述兩個(gè)系統(tǒng)封裝進(jìn)行表征實(shí)驗(yàn)。
圖10:封帽上有小光窗的封裝與封帽整體是紅外濾光片的封裝的MEMS紅外傳感器靈敏度對(duì)比
實(shí)驗(yàn)后,在22cm處,沒有觀察到小光窗和一體式紅外濾光封帽之間存在靈敏度測量值差異,響應(yīng)時(shí)間相同。選擇該距離是為了使光束方向接近傳感器上表面紅外的平面入射波。為了進(jìn)行FOV表征實(shí)驗(yàn),鑒于傳感器感光區(qū)置于黑體前面的正常條件,將傳感器安裝在從-90°到+ 90°的旋轉(zhuǎn)臺(tái)上。
圖11:紅外傳感器的紅外小光窗封裝、一體式紅外濾光封裝和大陶瓷封裝的FOV表征實(shí)驗(yàn)結(jié)果
在大陶瓷封裝中,紅外傳感器的FFOV角度為109°±2°,小于朗伯分布的理論值(理論上為120°),這可能是MEMS 的硅嵌入結(jié)構(gòu)所致。 小光窗封裝的FFOV角度為88°。采用相同的封裝旋轉(zhuǎn)方法,一體式紅外濾光模塑封裝的FFOV為100°。在最后一種情況中,由于模塑封裝腔壁靠近傳感器感光區(qū),觀察到了不對(duì)稱效應(yīng)。
封裝應(yīng)力模擬
對(duì)于特定吸收功率,高熱隔離度確保冷熱端之間的溫差最大化, 這是從熱電堆獲得大輸出電壓的重要因素。使用MEMS封裝可以選擇腔內(nèi)氣體,壓力選擇范圍100Bar至100mBar。氣體導(dǎo)熱性會(huì)影響溫度傳導(dǎo)速度,以及熱電堆冷熱端之間的溫差,進(jìn)而影響輸出電壓變化和傳感器效率。
MEMS封裝是通過晶圓片間的引線鍵合技術(shù)實(shí)現(xiàn)的。MEMS傳感器系統(tǒng)主要是由一個(gè)采用表面微加工工藝制造的硅微結(jié)構(gòu)構(gòu)成,通常是將兩個(gè)或多個(gè)晶圓片(裸片)堆疊放置,用玻璃材料化合物焊料將其焊接在硅基封裝內(nèi)。
在傳感器上存在厚度約為150um的硅保護(hù)帽,其本身對(duì)入射傳感器表面的輻射有自然的紅外波長過濾功能。當(dāng)然,硅保護(hù)帽的紅外透射光譜使傳感器光學(xué)性能在1-13um波長紅外區(qū)域變差12,具體程度取決于硅特性。
傳感器開發(fā)需要將MEMS硅封帽集成在傳感器晶圓上。我們模擬了由紅外傳感器、硅封帽、ASIC和封裝構(gòu)成的整個(gè)傳感器系統(tǒng)。因?yàn)槁闫询B安裝在封裝襯底上,傳感器微結(jié)構(gòu)與封裝結(jié)構(gòu)是一體的,因此,封裝對(duì)傳感器信號(hào)性能有影響。除了在工作過程中受到的應(yīng)力外,在制造過程中,特別是封裝焊接到PCB上后的冷卻工序,還會(huì)出現(xiàn)臨界情況。由于封裝是由熱膨脹系數(shù)(CTE)不同的材料制成,熱梯度會(huì)引起翹曲現(xiàn)象,導(dǎo)致應(yīng)力轉(zhuǎn)移到傳感器微結(jié)構(gòu),從而影響傳感性能。
用SolidWorks Simulation軟件建立了一個(gè)有限元3D模型,用于模擬在承載傳感器微結(jié)構(gòu)的硅襯底上出現(xiàn)的翹曲。焊接后冷卻模擬考慮了將封裝焊接在參考PCB上的情況。表3總結(jié)了熱負(fù)荷和邊界條件。圖12是有限元模型。
表2列出了模擬所用材料的特性。
盡管知道模擬結(jié)果在很大程度上取決于材料模型和所用材料的特性,但考慮到封裝模擬文獻(xiàn)中的常規(guī)做法,我們還是假定了分析比較的目的、可用的材料數(shù)據(jù)以及所執(zhí)行模擬的靜態(tài)性質(zhì),材料的各向同性彈性。
為了減少計(jì)算時(shí)間,我們考慮創(chuàng)建一個(gè)簡化模型。 但是,由于ASIC在封裝內(nèi)部的放置不對(duì)稱,在封帽上有光窗,因此,需要模擬整個(gè)模型。對(duì)于封裝上表面和下表面襯底層,等效機(jī)械性能計(jì)算方法如下14:
其中Eeff是有效楊氏模量,αeff 是有效熱膨脹系數(shù),分別是楊氏模量Ei, αi, Vi和CTE與構(gòu)成材料的體積或面積百分比。圖12是有限元模型,圖13是傳感器、ASIC和襯底上的翹曲模擬結(jié)果。承載傳感器微結(jié)構(gòu)的襯底的翹曲w定義為沿框架本身的位移z的最大值和最小值的差。
表2.材料特性
圖12:熱機(jī)械模擬有限元模型。a,b) CAD模型,c,d)有無封帽的有限元模型。 圖中沒有焊后模擬用的PCB板。
表3.熱機(jī)械FEA邊界條件和載荷
圖13:封裝襯底、ASIC和MEMS(頂部無晶圓)翹曲(w)。
結(jié)論
本文介紹了一個(gè)紅外傳感器的封裝設(shè)計(jì),產(chǎn)品原型表征測試結(jié)果令人滿意,測量到的FFOV角度在80°到110°之間,具體數(shù)值取決于光窗尺寸。為了降低閃光燈影響和環(huán)境噪聲,封裝頂部裝有硅基紅外濾光片,并做了表征實(shí)驗(yàn)。應(yīng)力模擬未在材料界面上發(fā)現(xiàn)臨界情況。封裝可靠性已初步達(dá)到JEDEC L3的環(huán)境應(yīng)力要求。