你的位置:首頁 > RF/微波 > 正文

專家講座:詳解你不懂的掃描陣列雷達信號處理

發(fā)布時間:2015-02-21 責任編輯:sherryyu

【導讀】本文中,我們將介紹先進的掃描陣列雷達,從經(jīng)驗豐富的雷達信號處理專家的角度以及傳統(tǒng)的嵌入式系統(tǒng)設計人員的角度來研究其體系結構。
 
主動電掃描陣列 (AESA) 雷達是當今先進武器系統(tǒng)的關鍵組成 , 特別是機載作戰(zhàn)系統(tǒng)。而其體系結構的未來發(fā)展將超越最初的軍事應用,延伸到地球物理測繪、汽車輔助駕駛、自動車輛、工業(yè)機器人和增強現(xiàn)實等領域:實際上, 這包括任何需要對大量的傳感器數(shù)據(jù)進行調(diào)理,融合到模型中進行判決的應用。
 
隨著 AESA 體系結構的擴展 , 它們將突破雷達信號處理專業(yè)應用 , 延伸到其他應用中。在外部應用中,這些設計會遇到典型的嵌入式設計流程:以 CPU 和軟件為中心的,基于 C 的以及與硬件無關的。本文中,我們將介紹先進的掃描陣列雷達,從經(jīng)驗豐富的雷達信號處理專家的角度以及傳統(tǒng)的嵌入式系統(tǒng)設計人員的角度來研究其體系結構。
 
典型系統(tǒng)的角色
 
掃描陣列和傳統(tǒng)移動盤式雷達的不同在于天線。掃描陣列并沒有采用熟悉的連續(xù)旋轉拋物線天線,而是在大部分系統(tǒng)中采用了平面靜止天線。陣列并不是有一個單元聚 焦在反射器上,而是有數(shù)百上千個單元,每個單元都有自己的收發(fā)器模塊。系統(tǒng)電子電路處理每一單元信號的振幅和相位 , 形成雷達波束和接收方向圖并聚焦 , 設置定義總天線方向圖的干涉方向圖。
 
這一方法避免了采用大量的移動部件,支持雷達實現(xiàn)傳統(tǒng)天線采用物理方法無法獲得的功能,例如,瞬 時改變波束方向,發(fā)送和接收同時有多個天線方向圖,或者把陣列分成多個天線陣,完成多項功能 —— 也就是,根據(jù)地形搜索目標,同時跟蹤目標。這些方法只需要在發(fā)送器增加一些信號,在每一接收器將信號分開。重疊是一種很好的方法。
 
一個完整的系統(tǒng)從CPU簇傳輸?shù)教炀€,然后再返回 ( 圖 1 ) 。 一開始處理時,軟件控制的波形發(fā)生器產(chǎn)生系統(tǒng)要發(fā)送的啁啾。取決于應用,降噪、多普勒處理和隱身的需求會對信號有所損傷。
一個非常簡化的 AESA 系統(tǒng)結構圖
圖 1 .一個非常簡化的 AESA 系統(tǒng)結構圖。
 
波形發(fā)生器將信號送到聚束網(wǎng)絡中。在這里,信號被連接至每一發(fā)送通道。在這一級,數(shù)字復用器在通道上應用振幅權重來實現(xiàn)空間濾波,對波形整形。這一步也可以 稍后再做。在很多設計中,每一通道的信號現(xiàn)在會通過一個數(shù)模轉換器 (DAC) ,然后輸入到模擬 IF 和 RF 上變頻器中。 RF 上變頻后,信號到達獨立的發(fā)送器模塊,附加上相移或者時延,調(diào)整振幅 ( 如果在基帶沒有做 ) ,最終進行濾波和放大。
 
一開始,接收到的信號實際上通過與反方向相同的通路,在后端要進行更多的處理。在每一個天線單元,限幅器和帶通濾波器保護了低噪聲放大器。放大器驅(qū)動 RF 下變頻器,可以結合模擬放大和調(diào)相功能。信號從 IF 級傳輸?shù)交鶐?,每一天線單元的信號到達其模數(shù)轉換器 (ADC) 。然后,聚束模塊把天線信號重新組合成一路或者多路復數(shù)數(shù)據(jù)采樣流,每一數(shù)據(jù)流代表了來自某一接收波束的信號。這些信號流通過大占空比的數(shù)字信號處理 (DSP) 電路,進一步調(diào)理數(shù)據(jù),進行多普勒處理,嘗試從噪聲中提取出實際信號。
[page]
什么時候進行數(shù)據(jù)轉換
 
在很多設計中,大部分信號處理工作是以模擬方式完成的。但是,隨著數(shù)字速度的提高,功耗和成本的降低,數(shù)據(jù)轉換器與天線靠的越來越近。 Altera 應用專家 Colman Cheung 建議了一個理想的系統(tǒng),直接從 DAC 驅(qū)動天線單元。但是, 2013 年,這類設計在技術上還無法實現(xiàn),特別是, trans-GHz RF 。
 
目前可以把數(shù)據(jù)轉換器放在 IF 中,進行 IF 頻率轉換,所有基帶處理工作都是數(shù)字化的 ( 圖 2 ) 。 可以在基帶聚束網(wǎng)絡中,以數(shù)字方式在天線單元之間產(chǎn)生干涉方向圖的時延,每一個天線單元并不需要模擬相移器或者延時線。這種劃分方法支持 DSP 設計人員把發(fā)送和接收通路分解成分立的功能 —— 乘法器、濾波器、用于延時的 FIFO ,以及加法器,在 MATLAB 中對其進行建模,從庫中實現(xiàn)它們??梢园岩笞羁量痰墓δ芊诺綄iT開發(fā)的 ASIC 、 FPGA 或者 GPU 芯片中,而把要求不太高的運算分組成 DSP 芯片或者加速器中的代碼。
把數(shù)據(jù)轉換器放到 IF 級的最后
圖 2 .把數(shù)據(jù)轉換器放到 IF 級的最后。
 
需要特別注意信號從聚束網(wǎng)絡出來后的接收鏈信號處理 , 這是因為其存儲器和處理需求會非常大 , 涉及到的動態(tài)范圍非常寬 —— 從干擾發(fā)射器輸入到搜索探測范圍的每一邊沿。會需要高精度浮點硬件,還需要更強的處理能力。
 
在其最后級,有目的的對接收鏈進行修改并實現(xiàn)。通過其濾波、聚束和脈沖壓縮級,鏈的任務是從噪聲中提取出信號,特別是那些可能承載了環(huán)境中實際目標信息的信號。然后,重點從信號轉向它們所代表的目標,任務的本質(zhì)發(fā)生了改變。
 
從信號到目標
 
脈沖壓縮是這一抽象過程的開始。在時間域或者頻域,脈沖壓縮器一般通過自相關找到有可能含有發(fā)送啁啾的波形。然后,它采用脈沖目標來表示這些波形 —— 含有到達時間、頻率和相位以及其他相關數(shù)據(jù)的數(shù)據(jù)包。從這里開始,接收鏈會處理這一數(shù)據(jù)包而不是接收到的信號。
 
下 一步一般是多普勒處理。首先,脈沖被送入方格陣列中( 圖 3 ) 。在陣列中,每一列含有從某一發(fā)射器啁啾返回的脈沖。陣列中會有很多列,這取決于系統(tǒng)能夠承受多大的延時。陣列中的行表示返回切換時間:距離陣列的 x 軸越遠,發(fā)射器啁啾和接收脈沖到達時間之間的延時就越大。這樣,延時方格也代表了與某一脈沖反射的目標的距離。
多普勒處理方格
圖 3 .多普勒處理方格。
 
把一系列啁啾脈沖置入到正確的方格中后 , 多普勒處理程序水平移動數(shù)據(jù) —— 觀察從一個目標返回的脈沖隨時間的變化 , 提取出相對速度和目標頭部信息。這一處理方法需要很大的環(huán)形緩沖,無論某一多普勒算法一次能夠處理多少方格,緩沖都能夠容納所有的方格。
[page] 
先進系統(tǒng)在陣列中增加了另一個維度。通過把天線劃分成子陣列,系統(tǒng)可以同時發(fā)送多個波束,然后,使用相同的多旁瓣天線方向圖設置接收器進行監(jiān)聽?;蛘?,系統(tǒng) 通過聚束或者使用合成孔徑方法來掃描波束?,F(xiàn)在,當裝入壓縮后的脈沖時,系統(tǒng)建立一個三維方格陣列:一個軸上是發(fā)送脈沖,第二個是返回延時,第三個是波束 方位( 圖 4 ) ?,F(xiàn)在,對于每一路脈沖,我們有兩維或者三維方格陣列,同時表示距離和方向 —— 表示物理空間。這種存儲器的排列是空時自適應處理 (STAP) 的起點。
.多維方格為STAP建立矩陣
圖 4 .多維方格為STAP建立矩陣。
 
這一術語可以解釋為 :“ 空時” , 數(shù)據(jù)組在 3D 空間統(tǒng)一了目標的位置 , 含有與目標相關的啁啾時間。之所以是“自適應”,是因為算法從數(shù)據(jù)中獲得自適應濾波。
 
概 念上,實際情況也是如此,構成自適應濾波器是一個矩陣求逆過程:這一數(shù)據(jù)要與哪一矩陣相乘,得到噪聲中隱藏的結果 ? 據(jù)Altera資深技術營銷經(jīng)理Michael Parker,推測的隱藏方向圖信息可能來自多普勒處理過程發(fā)現(xiàn)的種子,從其他傳感器采集的數(shù)據(jù),或者來自智能數(shù)據(jù)。運行在 CPU 下游的算法把假設的方向圖插入到矩陣方程中,解出能夠產(chǎn)生預期數(shù)據(jù)的濾波函數(shù)。
 
很顯然,在這一點,計算負載非常大。反變換算法需要的動 態(tài)范圍要求進行浮點計算。對于戰(zhàn)斗環(huán)境中一個實際的中等規(guī)模系統(tǒng),必須實時進行處理,Parker估算了STAP負載會達到幾個 TFLOPS 。在采用了低分辨率、窄動態(tài)范圍的系統(tǒng)中,實時性要求并不高,例如,簡單的汽車輔助駕駛系統(tǒng)或者合成孔徑映射系統(tǒng)等,這一負載會顯著減小。
 
從 STAP ,信息進入到通用CPU中,復雜但是數(shù)字計算量小,軟件嘗試對目標進行分類,構建環(huán)境模型,估算威脅所在,或者告訴操作員,或者直接采取緊急措施。在這一點,我們不但在信號處理域處理信號,而且還進入了人工智能領域。
[page] 
兩種體系結構
 
從一名經(jīng)驗豐富的雷達系統(tǒng)設計師的角度看,我們還只是膚淺的了解了 AESA 戰(zhàn)斗雷達。這一參考方法把網(wǎng)絡看成是相對靜態(tài)的 DSP 鏈,都連接至STA 模塊,其本身是軟件受控的矩陣算術單元。除此之外,從 DSP 專家的角度看,是一組 CPU 內(nèi)核。
 
作為對比,汽車或者機器人系統(tǒng)設計人員會從完全不同的角度看系統(tǒng)。從嵌入式設計人員的角度看,系統(tǒng)只是一大段軟件,有一些非常專用的 I/O 器件,以及需要進行加速的某些任務。有經(jīng)驗的雷達信號工程師考慮到信號處理和通用硬件的相對規(guī)模,可能會對這一方法不屑一顧。很顯然,機載多功能雷達的數(shù) 據(jù)速率、靈活性和動態(tài)范圍要求采用專用 DSP 流水線以及大量的本地緩沖才能完成實時處理。但是對于有幾個天線單元的不同應用,簡單的環(huán)境、更短的距離和較低的分辨率,以 CPU 為中心的觀點帶來了一些有意思的問題。
 
萊斯大學的 Gene Frantz 教授提出的第一個問題是,定義真實環(huán)境的 I/O 。第二個問題是選擇 CPU 。 Frantz 注意到,“很少只有一個 CPU 。更常見的是異構多處理系統(tǒng)。” Frantz 建議這一方法不從 MATLAB 中的 DSP 函數(shù)開始,而是從 C 語言中描述的完整系統(tǒng)開始。然后,以 CPU 為中心的設計人員不是定義設計中 DSP 和 CPU 域之間的硬件邊界,而是“不斷優(yōu)化并加速 C 代碼。”
 
實際結果可能與以 DSP 為中心的方法完全不同。例如,以 CPU 為中心的方法一開始假設在一片通用 CPU 上執(zhí)行所有工作。如果速度不夠快,這一方法轉向多片 CPU ,共享一個分層的連續(xù)存儲器。只有當多核不足以完成任務時,這一方法才轉向優(yōu)化的硬件加速器。
 
相似的,以 CPU 為中心的設計從假設一個統(tǒng)一的存儲器開始。它為每一個處理器分配連續(xù)高速緩存,為加速器分配本地工作存儲器。它開始時并不假設任何硬件流水線,也不把任務混合映射到硬件資源上。
 
在要求最嚴格的應用中,同一個系統(tǒng)設計可能會同時采用兩種體系結構方法。幾乎每一任務嚴格的帶寬和計算需求都導致采用專用硬件流水線和存儲器例化。要求大幅度降低功耗可能會迫使做出采用高精度數(shù)字方法的決定,這使得在任務之間共享硬件變得越來越復雜。
 
精度是 Frantz 強調(diào)的一點。他指出,“把有效位數(shù)減少一半使您能夠?qū)⑿阅芴岣咭粋€量級。”為降低功耗,您可以對以上這些做出犧牲或者部分犧牲。 
 
Frantz 指出了關于模擬 / 數(shù)字邊界的問題。他說:“我們需要重新考慮模擬信號處理。三十年以前,我們開始告訴系統(tǒng)設計人員只要做好數(shù)據(jù)轉換就行,我們采用數(shù)字方法完成其他所有工 作。但是實際上,在 8 位分辨率,模擬和數(shù)字方法大概是相同的。模擬是不是更好一些 ? 這取決于在您的系統(tǒng)中,‘更好''的含義是什么。”
 
地 球物理測繪或者自動陸地車輛系統(tǒng)使用的合成孔徑雷達等窄帶系統(tǒng)會采用與戰(zhàn)斗雷達完全不同的體系結構。它可以使用模擬濾波器、上變頻器 / 下變頻器以及聚束功能來完成一個寬帶存儲器系統(tǒng)的所有后續(xù)處理工作,還使用具有浮點加速器和動態(tài)負載均衡功能的多個異構處理器 ( 圖 5 ) 。
一個理想的低性能AESA系統(tǒng)
圖 5 .一個理想的低性能AESA系統(tǒng)。
 
對信號處理任務進行可視化處理 , 使其在軟件中完成 , 系統(tǒng)設計人員獲得了新的運行時選擇 , 例如 , 在任務之間移動處理資源 , 關斷不需要的處理器 , 盡早修改算法 ,以便響應數(shù)據(jù)碼型 , 或者運行多種算法 , 查看哪一種能夠得出最佳結果。
 
AESA 雷達系統(tǒng)不但為研究實現(xiàn)策略提供了豐富的環(huán)境,而且還提供了方法來研究有大量信號的系統(tǒng)。這些有源陣列分布在軍事等多種設計應用中,所以,不應該局限在傳 統(tǒng)的嵌入式設計思路中。因此,對于完全不同的需要大量信號的領域要有新思路,這包括信號智能和網(wǎng)絡安全等應用。這是值得注意的領域。
 
要采購轉換器么,點這里了解一下價格!
特別推薦
技術文章更多>>
技術白皮書下載更多>>
熱門搜索
?

關閉

?

關閉