你的位置:首頁 > 傳感技術(shù) > 正文

精講:可穿戴設(shè)備之——3軸地磁傳感器大起底

發(fā)布時(shí)間:2014-12-13 責(zé)任編輯:echolady

【導(dǎo)讀】可穿戴設(shè)備的興起促使運(yùn)動(dòng)傳感器技術(shù)遍地生花。例如智能手機(jī)、電視遙控器、視頻控制臺(tái)、個(gè)人訓(xùn)練設(shè)備等等應(yīng)用層出不窮。對(duì)于3軸地磁傳感器,可謂是可穿戴設(shè)備中的關(guān)鍵。本文就來為大家精講3軸地磁傳感器的大起底。

3軸地磁傳感器

地磁傳感器用于測(cè)量地球的磁場(chǎng),進(jìn)而推導(dǎo)出航向。歷史上曾用于羅盤的地磁傳感器如今被大批量用于種類廣泛的應(yīng)用,包括汽車羅盤(在后視鏡中)、手表、雷達(dá)探測(cè)器、傳動(dòng)軸和機(jī)器人。然而,真正廣泛的采用起始于iPhone3GS,它是美國首款包含羅盤并得到廣泛普及的智能手機(jī)。

磁力傳感器的主要問題是它們測(cè)量所有磁場(chǎng),不僅是地球磁場(chǎng)。例如,像電池或含鐵元件等系統(tǒng)元件將干擾傳感器附近的磁場(chǎng)。這些被認(rèn)為是系統(tǒng)內(nèi)的固定干擾,可以通過校準(zhǔn)進(jìn)行補(bǔ)償。

更大的問題是改變局部磁場(chǎng)會(huì)臨時(shí)性地干擾航向信息。桌椅上的金屬部件、開過的汽車、附近的其它手機(jī)和電腦、窗框、建筑物內(nèi)的雷達(dá)等物件都會(huì)干擾讀數(shù)。補(bǔ)償這些磁場(chǎng)和其它瞬時(shí)地磁異常要求開發(fā)出復(fù)雜的算法,以便有效地將地球的磁場(chǎng)與其它臨時(shí)性“侵入”磁場(chǎng)區(qū)分開來。

詳細(xì)了解地磁傳感器

在今天的消費(fèi)電子產(chǎn)品中使用最廣泛的地磁傳感器是霍爾效應(yīng)傳感器。這種傳感器主導(dǎo)消費(fèi)市場(chǎng)的原因是體積小、價(jià)格低并且節(jié)省功耗。但這種傳感器同樣有噪聲,很容易受其它磁場(chǎng)干擾,這些問題如果不校正將限制其向陀螺儀提供正確航向數(shù)據(jù)的能力。然而,如果能夠接受稍大尺寸的永磁感應(yīng)式地磁傳感器,就可以在不犧牲成本或功耗的情況下獲得顯著改進(jìn)的噪聲與分辨率性能。表1顯示了霍爾效應(yīng)和永磁感應(yīng)傳感器的規(guī)格。注意,永磁感應(yīng)傳感器可以提供明顯更低的噪聲和更高的分辨率。

精講:可穿戴設(shè)備之——3軸地磁傳感器大起底
表1:霍爾效應(yīng)和永磁感應(yīng)傳感器規(guī)格
 
下圖顯示了地磁傳感器在磁場(chǎng)強(qiáng)度為2.4mT數(shù)量級(jí)的固定位置旋轉(zhuǎn)時(shí)輸出的磁場(chǎng)讀數(shù)。在圖1中,傳感器旋轉(zhuǎn)了整整360°,而在圖2中,傳感器從0°旋轉(zhuǎn)到90°。這兩張圖都繪出了霍爾效應(yīng)傳感器、永磁感應(yīng)傳感器和理想傳感器的試驗(yàn)數(shù)據(jù)。

精講:可穿戴設(shè)備之——3軸地磁傳感器大起底
圖1:當(dāng)傳感器旋轉(zhuǎn)360°時(shí)的磁場(chǎng)讀數(shù)
 
從圖中可以看出,霍爾效應(yīng)傳感器的噪聲要比永磁感應(yīng)傳感器大得多。這與器件參數(shù)規(guī)格一致,因?yàn)榛魻栃?yīng)傳感器的噪聲指標(biāo)為500nT,而永磁感應(yīng)傳感器噪聲指標(biāo)要低一個(gè)數(shù)量級(jí),只有30nT。如圖2所示,對(duì)霍爾效應(yīng)傳感器來說,可以在多個(gè)方向觀察到2mT的磁場(chǎng)讀數(shù),而2mT的讀數(shù)可以代表從5°到60°的任何航向。雖然超采樣可以減少這種不確定性,但這種非常明顯的傳感器噪聲差異確實(shí)會(huì)導(dǎo)致很大的測(cè)量不確定性。這種噪聲差異和相關(guān)測(cè)量的不確定性將顯著影響9軸傳感器融合算法的性能表現(xiàn)。

精講:可穿戴設(shè)備之——3軸地磁傳感器大起底
圖2:傳感器旋轉(zhuǎn)90°時(shí)的磁場(chǎng)讀數(shù)
 
[page]
 
在9軸傳感器融合系統(tǒng)中,加速度計(jì)和磁力傳感器建立了一個(gè)長期的基準(zhǔn)用于校正零偏變化。但磁力傳感器讀數(shù)中的噪聲以及磁力傳感器類型對(duì)零偏校正的效果有顯著的影響。圖3再次顯示了隨時(shí)間改變的零偏變化,但這次畫出了未校正的、用霍爾效應(yīng)傳感器校正的、用永磁感應(yīng)傳感器校正的和理想輸出的圖形。值得注意的是,所用的傳感器融合算法對(duì)兩種傳感器來說是相同的。

精講:可穿戴設(shè)備之——3軸地磁傳感器大起底
圖3:隨時(shí)間改變的陀螺儀零偏,包括校正和未校正的情況
 
從圖3可以明顯看出,使用永磁感應(yīng)傳感器的9軸傳感器融合系統(tǒng)在盡量減小零偏變化方面做得比霍爾效應(yīng)傳感器要好。這種零偏漂移方面的改進(jìn)直接得益于永磁感應(yīng)傳感器低一個(gè)數(shù)量級(jí)的噪聲,因?yàn)榛魻栃?yīng)傳感器相對(duì)較高的噪聲將在傳感器融合算法中引入不確定性,進(jìn)而減弱算法控制零偏的能力。

永磁感應(yīng)傳感器可以更好地控制零偏漂移的能力將顯著改善隨時(shí)間變化的航向性能,如圖8所示。我們?cè)谶@里可以看到,與未校正系統(tǒng)相比,使用霍爾效應(yīng)傳感器的傳感器融合系統(tǒng)的長期性能在8分鐘內(nèi)減少航向誤差的效果高出2倍。但使用永磁感應(yīng)傳感器的傳感器融合系統(tǒng)與未校正系統(tǒng)相比可以減少航向誤差一個(gè)數(shù)量級(jí),比基于霍爾效應(yīng)磁力傳感器的系統(tǒng)好5倍。
精講:可穿戴設(shè)備之——3軸地磁傳感器大起底
圖4:隨時(shí)間改變的航向誤差。
 
結(jié)語

隨著使用永磁感應(yīng)式地磁傳感器代替霍爾效應(yīng)傳感器的9軸傳感系統(tǒng)的廣泛普及,精確定位移動(dòng)所需的資源已經(jīng)就位。首先要理解精度和準(zhǔn)確度遠(yuǎn)高于目前的“移動(dòng)接近”系統(tǒng)的運(yùn)動(dòng)跟蹤世界可能性,然后才能明白這個(gè)世界中的增強(qiáng)現(xiàn)實(shí)將更具無限可行性、游戲玩起來更直觀、基于位置的應(yīng)用也將更具魯棒性。

相關(guān)閱讀:

名廠專家:新型傳感器如何提升電機(jī)性能降低功耗
超實(shí)用!加速度傳感器的相關(guān)應(yīng)用,你絕對(duì)用得到!
如何為輸液泵選擇觸力傳感器/壓力傳感器?

要采購傳感器么,點(diǎn)這里了解一下價(jià)格!
特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
?

關(guān)閉

?

關(guān)閉