可穿戴型下肢助力機(jī)器人感知系統(tǒng)研究
發(fā)布時(shí)間:2017-03-08 責(zé)任編輯:wenwei
【導(dǎo)讀】可穿戴型下肢助力機(jī)器人主要由機(jī)械、傳感和控制三大部分組成。機(jī)器人外骨架包含12個(gè)自由度,每只腿有6個(gè)自由度,髖關(guān)節(jié)包含3個(gè)自由度,膝關(guān)節(jié)、踝關(guān)節(jié)和腳底各包含1個(gè)自由度,該設(shè)計(jì)要求不僅符合以往的擬人機(jī)器人行走機(jī)構(gòu)的設(shè)計(jì)要求,又達(dá)到與人體腿部運(yùn)動相協(xié)調(diào)、互不產(chǎn)生運(yùn)動干涉的設(shè)計(jì)要求。
1 引言
可穿戴型下肢助力機(jī)器人是輔助型康復(fù)機(jī)器人的一種,是一種幫助人們擴(kuò)展下肢運(yùn)動能力的助力裝置,其基本原理是在基于人體運(yùn)動行為意識信息的基礎(chǔ)上,由安裝在腿部關(guān)節(jié)(髖關(guān)節(jié)及膝關(guān)節(jié))處的伺服電機(jī)驅(qū)動關(guān)節(jié)運(yùn)動,通過各關(guān)節(jié)角度、速度值的改變來達(dá)到與人體腿部的協(xié)調(diào)運(yùn)動并提供助力,降低人在負(fù)重或長時(shí)間行走情況下的運(yùn)動強(qiáng)度,對那些有異樣運(yùn)動行為的人提供治療和矯形,與人體組成了一個(gè)協(xié)調(diào)而且完美的整體。
目前,世界上大約有10余家實(shí)驗(yàn)室從事可穿戴型人體助力機(jī)器人的研究,其中日本和美國走在前列,國內(nèi)尚未見相關(guān)報(bào)道。日本筑波大學(xué)(Tsukuba University)在2002年研制開發(fā)了機(jī)器人裝混合助力腿(hyhrid assis-tive limb,HAL),機(jī)械外骨骼綁縛在人腿的兩側(cè),利用貼在腿部皮膚上的EMG傳感器檢測肌肉的電流,控制電動馬達(dá)驅(qū)動機(jī)械外骨骼運(yùn)動以輔助腿部的動作。
美國加州大學(xué)伯克利分校機(jī)器人和人體工程實(shí)驗(yàn)室研制出美軍“伯克利下肢外骨骼”(Berkeley lower extremity exoskeleton, BLE-EX),由背包式外架、金屬腿及相應(yīng)的液壓驅(qū)動設(shè)備組成,機(jī)械系統(tǒng)采用了與類人形結(jié)構(gòu)相似的設(shè)計(jì),背包式外架能夠使操縱者攜帶一定載荷,其有效作用力不經(jīng)過穿戴者而直接經(jīng)由外骨骼傳至地面。下肢外骨骼能夠攜帶外部負(fù)載和自身的重量(包括操縱者的重量)在崎嶇路面遠(yuǎn)距離行走,能使帶有全副武裝的士兵增強(qiáng)負(fù)重能力和提高行軍速度。
然而上述裝置存在著共同的缺點(diǎn),由于肌電傳感器是根據(jù)肌肉活動時(shí)皮膚表面?zhèn)魉偷奈⑷蹼娏餍盘柣蚣∪獾能浻渤潭葋硗茢嗳说男袨橐庾R,導(dǎo)致所采用的大部分傳感器要與人體肌膚直接接觸并粘貼在肌膚上,需要特別的固定裝置,這樣直接導(dǎo)致穿戴上的不便;人體分泌的汗液、傳感器安裝的好壞等將影響所獲取信息的穩(wěn)定與準(zhǔn)確性,而且信息量大而復(fù)雜,易受干擾,從而使控制難度加大。
因此,本文設(shè)計(jì)一種新型的可穿戴型下肢助力機(jī)器人感知系統(tǒng),該系統(tǒng)用于獲取人體下肢和機(jī)器人外骨骼之間的接觸力,利用這些力信息和關(guān)節(jié)角度信息控制機(jī)器人外骨骼以實(shí)現(xiàn)對人體下肢運(yùn)動的助力。
2 助力機(jī)器人系統(tǒng)
可穿戴型下肢助力機(jī)器人主要由機(jī)械、傳感和控制三大部分組成。機(jī)器人外骨架包含12個(gè)自由度,每只腿有6個(gè)自由度,髖關(guān)節(jié)包含3個(gè)自由度,膝關(guān)節(jié)、踝關(guān)節(jié)和腳底各包含1個(gè)自由度,該設(shè)計(jì)要求不僅符合以往的擬人機(jī)器人行走機(jī)構(gòu)的設(shè)計(jì)要求,又達(dá)到與人體腿部運(yùn)動相協(xié)調(diào)、互不產(chǎn)生運(yùn)動干涉的設(shè)計(jì)要求,如圖1所示。
執(zhí)行部分主要指直流伺服電機(jī),該系統(tǒng)需要4個(gè),它們分別固定在兩腿髖關(guān)節(jié)和膝關(guān)節(jié)上。可穿戴型下肢助力機(jī)器人控制系統(tǒng)主要采用PC104嵌入式控制系統(tǒng)板和PC104CAN卡,整個(gè)系統(tǒng)的控制結(jié)構(gòu)見圖2。
3 機(jī)器人感知模塊
3.1 人機(jī)系統(tǒng)接觸信息
可穿戴型下肢助力機(jī)器人主要利用人體下肢運(yùn)動信息提供助力,這些運(yùn)動信息主要包括人體與外骨骼機(jī)器人的腿部接觸力信號、腳底力信號,膝關(guān)節(jié)和踝關(guān)節(jié)的角度信號等。為了獲取這些運(yùn)動信息,設(shè)計(jì)一套基于CAN總線的多傳感器感知系統(tǒng),解決了傳統(tǒng)的傳感器通信方式(主要是指RS-232和RS-485)中主節(jié)點(diǎn)單一和實(shí)時(shí)性差等問題。該系統(tǒng)由電機(jī)碼盤、安裝在腿部的2個(gè)二維力傳感器和安裝在腳底的6個(gè)一維力傳感器組成。腿部力傳感器固定在人腿膝關(guān)節(jié)和踝關(guān)節(jié)上部,用于測量人體與外骨骼之間的接觸力;腳底力傳感器安裝在腳尖和腳跟,用于測量地面反力;電機(jī)碼盤用于測量髖關(guān)節(jié)和膝關(guān)節(jié)轉(zhuǎn)動角度,如圖1所示。
3.2 系統(tǒng)設(shè)計(jì)
腿部二維力傳感器是用于測量機(jī)器人外骨骼和人體之間的接觸力大小的傳感器,其測量的準(zhǔn)確性和穩(wěn)定性對助力機(jī)器人的控制有重要的意義。腿部力傳感器主要是由2個(gè)二維力傳感器組成,用于測量人體大、小腿與機(jī)器人外骨骼之間的接觸力,該接觸力包括沿人體腿部的力(X方向)和垂直腿部的力(Y方向)。
在下肢助力機(jī)器人的控制中,除了要知道人體腿部與機(jī)器人的作用力之外,還需要知道人體腳底對機(jī)器人的作用力,而腳部力傳感器是測量地面對人機(jī)系統(tǒng)的作用反力。人體落腳對地面的著力點(diǎn)可以用三個(gè)支撐點(diǎn)表示,這三個(gè)支撐點(diǎn)的位置分別位于第一跖骨根部和第五跖骨根部以及后腳跟,人體靠這三點(diǎn)間產(chǎn)生的足弓支撐身體,而身體的重量經(jīng)由這三點(diǎn)傳遞到地面。為了準(zhǔn)確獲取行走時(shí)腳底的力信息,腳底力傳感器的安裝位置就定在這三點(diǎn)的位置上,每只腳需要安裝3個(gè)一維力傳感器,共需要6個(gè)一維力傳感器,具體安裝位置見圖3。由于腳底機(jī)械部分的限制,傳感器彈性體體積比較小,其本體機(jī)械尺寸φ40 mm(直徑)×8 mm(厚度),量程為1000 N。
3.3 傳感器設(shè)計(jì)
彈性體的設(shè)計(jì)是多維傳感器設(shè)計(jì)中的關(guān)鍵。本文在利用有限元分析方法對傳感器彈性體的靜態(tài)和動態(tài)特性仿真分析的基礎(chǔ)上,設(shè)計(jì)一種基于E型膜片的彈性體結(jié)構(gòu),這種結(jié)構(gòu)的傳感器具有結(jié)構(gòu)簡單、靈敏度高、維間耦合小、容易標(biāo)定的特點(diǎn)。整個(gè)彈性體主要由彈性膜片、應(yīng)變計(jì)和受力轉(zhuǎn)接體三個(gè)部分組成,彈性體由兩層E型膜片構(gòu)成,實(shí)現(xiàn)X和Y兩個(gè)方向應(yīng)變力的測量。彈性膜片為圓形結(jié)構(gòu),其直徑和厚度分別為φ15 mm和2 mm,厚度方向和測量方向一致。敏感元件采用箔式電阻應(yīng)變片,應(yīng)變片粘貼在E型膜片上。傳感器的輸出是E型膜片的應(yīng)力,應(yīng)力的測量方式很多,本研究采用箔式電阻應(yīng)變片,應(yīng)變片粘貼在E型膜片上,用于測量彈性體上應(yīng)力的大小。應(yīng)變計(jì)貼片位置如圖4所示,X和Y方向應(yīng)變片安裝在E型膜片的下端,四片應(yīng)變片電阻組成一個(gè)惠斯登全橋電路(如圖5所示),實(shí)現(xiàn)輸出信號的自動解耦。當(dāng)力作用于傳感器時(shí),由于力大小、方向的不同,各個(gè)方向的敏感電阻受到的應(yīng)力不同,從而得到力與應(yīng)變之間的關(guān)系。以X方向?yàn)槔珽型膜片敏感彈性部分的圓環(huán)平膜片屬于薄板結(jié)構(gòu),在X向力的作用下,邊界條件比較簡單,可以等效為外圓周固定,集中應(yīng)力作用在硬中心的圓形薄板。根據(jù)薄板理論可知,周邊固支具有硬中心的膜片在半徑r處的徑向應(yīng)力和切向應(yīng)力為
式中:ω,h分別為圓形膜片的法向位移和厚度;F為施加力的等效集中力;f(r),P(r)是僅與r有關(guān)的函數(shù)。
由上式可以看出,當(dāng)半徑r一定,也就是壓敏電阻位置固定時(shí),圓形膜片表面上的應(yīng)變ε為
式中為應(yīng)變系數(shù)常量。
由于使用等臂電橋,即,有
式中:分別是4個(gè)敏感電阻的應(yīng)變;ε為圓形膜片的總應(yīng)變;G,k為常量;是橋路輸出電壓。
綜合式(4),(5),橋路的輸出電壓信號正比于傳感器的力信號,測量輸出電壓信號就可以得到被測目標(biāo)的力信號。
傳感器硬件電路采用嵌入式片上系統(tǒng),由數(shù)字電路和模擬電路兩部分組成,其中模擬電路由信號調(diào)零電路、運(yùn)算放大電路和模擬濾波電路組成;數(shù)字電路部分主要包括A/D采樣模塊、數(shù)字計(jì)算模塊、CAN總線控制器、CAN總線驅(qū)動器和必要的外圍電路模塊。圖6是助力機(jī)器人力傳知系統(tǒng)的數(shù)據(jù)采集與處理系統(tǒng)的硬件電路原理框圖。
軟件設(shè)計(jì)分為下位機(jī)(微處理器)的軟件設(shè)計(jì)和上位機(jī)(PC)的軟件設(shè)計(jì)。每個(gè)傳感器作為一個(gè)節(jié)點(diǎn)通過CAN總線互聯(lián),當(dāng)接收到上位機(jī)的命令后,首先進(jìn)行命令判斷,根據(jù)不同的命令作出相應(yīng)的數(shù)據(jù)處理。上位機(jī)(PC)主要包括清零點(diǎn)、力信息(數(shù)字量)、回傳力信息、查詢力信息、屏蔽報(bào)警等命令。下位機(jī)的軟件設(shè)計(jì)主要由數(shù)據(jù)采集程序(A/D轉(zhuǎn)換)、數(shù)據(jù)處理程序以及CAN總線通訊程序三大部分組成。啟動CAN中斷以前,在主程序中進(jìn)行一次數(shù)據(jù)采集,得到傳感器系統(tǒng)的初始值,這其中包括3個(gè)A/D轉(zhuǎn)換通道;延時(shí),完成通道的初始化;數(shù)據(jù)采集是在CAN中斷程序中完成的,每一次中斷完成1組三維力信息數(shù)據(jù)的采集以及相應(yīng)的A/D轉(zhuǎn)換;同時(shí)讀取轉(zhuǎn)換結(jié)果,對轉(zhuǎn)換結(jié)果進(jìn)行數(shù)字處理,數(shù)字處理主要由數(shù)字濾波與力信息解耦兩大部分組成,數(shù)字濾波主要采用窗口移動法與數(shù)據(jù)平均值法相結(jié)合;數(shù)據(jù)經(jīng)過解耦處理后,通過SendData()函數(shù),將數(shù)據(jù)發(fā)送到CAN總線上,上位機(jī)通過ID號識別接受下位機(jī)數(shù)據(jù),具體流程見圖7。
4 傳感器標(biāo)定實(shí)驗(yàn)
E型膜片元件結(jié)構(gòu)的復(fù)雜性使得產(chǎn)品特性的一致性比一維傳感器更難保證,應(yīng)變計(jì)的貼片工藝很難保證絕對理想情況,這些因素決定傳感器的實(shí)際靜態(tài)特性和理論計(jì)算值之間存在一定的誤差,因此傳感器的靜態(tài)特性一般采用標(biāo)定實(shí)驗(yàn)的方法獲取,其標(biāo)定準(zhǔn)確度將直接影響傳感器使用時(shí)的測量準(zhǔn)確度。所謂傳感器的標(biāo)定,就是建立傳感器的三路輸出值與作用在傳感器坐標(biāo)系原點(diǎn)上的三維力之間的數(shù)量關(guān)系。標(biāo)定實(shí)驗(yàn)過程包括靜態(tài)標(biāo)定和實(shí)時(shí)測量驗(yàn)證兩部分。為了減少隨機(jī)誤差的影響,采用一種具有一定冗余力向量的最小二乘標(biāo)定方法。設(shè)F是加載力矩陣,V為傳感器的輸出矩陣(數(shù)字量),C為標(biāo)定矩陣,E為誤差矩陣,則
F=CV+E (6)
式中:F,V為已知量;E可以設(shè)定。于是,標(biāo)定矩陣的求解可以轉(zhuǎn)化為求解標(biāo)定矩陣C,使式(6)在最小二乘法意義下最優(yōu)。在微型指力傳感器標(biāo)定過程中,對施加在傳感器上X,Y方向的載荷和敏感橋路之間的關(guān)系進(jìn)行測量,其測量值(數(shù)字量)與所加砝碼數(shù)值的對應(yīng)關(guān)系如圖8所示(表示傳感器標(biāo)定所加載荷,表示傳感器輸出數(shù)字量)。
從圖8可以看出,傳感器X方向加力時(shí),所受載荷和傳感器敏感橋路輸出之間的映射關(guān)系可以基本認(rèn)為是線性的,Y方向的最大耦合不超過2.5%。利用最小二乘法得到傳感器的兩組靜態(tài)標(biāo)定矩陣為
由此可以計(jì)算出傳感器的I類誤差為2%,II類誤差為2.5%。利剛C1,C2兩組標(biāo)定矩陣對傳感器進(jìn)行實(shí)時(shí)測量檢驗(yàn),結(jié)果顯示I類最大誤差不超過2%,II類誤差不超過2.5%。通過該標(biāo)定系統(tǒng)得到的靜態(tài)標(biāo)定矩陣和理論設(shè)計(jì)值比較接近,說明標(biāo)定系統(tǒng)和標(biāo)定方案是切實(shí)可行的。
5 結(jié) 論
本文針對一種新型的人體輔助型康復(fù)機(jī)器人,設(shè)計(jì)了一套基于CAN總線的下肢運(yùn)動信息感知系統(tǒng),見圖9。經(jīng)分析可穿戴型助力機(jī)器人所需要的控制信息可確定傳感器的種類、數(shù)量和安裝位置;重點(diǎn)介紹腿部和腳底力傳感器的彈性體設(shè)計(jì),測量電路和上下位機(jī)軟件;對傳感器進(jìn)行標(biāo)定實(shí)驗(yàn)并對數(shù)據(jù)進(jìn)行分析,給出傳感器的一般性能指標(biāo),結(jié)果說明本研究中的設(shè)計(jì)理論和設(shè)計(jì)過程是正確的,基本可以滿足可穿戴型下肢助力機(jī)器人控制系統(tǒng)的需要。未來的工作主要集中在以下幾點(diǎn):
①繼續(xù)完善傳感器的彈性體結(jié)構(gòu),在滿足傳感器性能指標(biāo)的基礎(chǔ)上進(jìn)一步減小傳感器彈性體體積和精確確定應(yīng)變計(jì)的貼片位置;
②完善傳感器的測量電路設(shè)計(jì),增加濾波電路,改進(jìn)放大電路;
③改進(jìn)傳感器的標(biāo)定系統(tǒng),把標(biāo)定誤差降至最低。
推薦閱讀:
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過壓持續(xù)較長時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測的振動傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動車
電動工具
電動汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號
電路圖知識