圖1:典型電化學(xué)氣體傳感器信號(hào)鏈
具有傳感器診斷功能的電化學(xué)氣體測(cè)量系統(tǒng)設(shè)計(jì)分析
發(fā)布時(shí)間:2021-05-13 責(zé)任編輯:lina
【導(dǎo)讀】氣體檢測(cè)儀器廣泛應(yīng)用于從家用空氣質(zhì)量測(cè)量設(shè)備到工業(yè)有毒氣體檢測(cè)解決方案的各種應(yīng)用。電化學(xué)氣體傳感器應(yīng)用的歷史可以追溯到1950年代,當(dāng)時(shí)開發(fā)了用于氧氣監(jiān)測(cè)的電化學(xué)傳感器。這種技術(shù)的首批應(yīng)用之一是葡萄糖生物傳感器,用于測(cè)量葡萄糖的缺氧情況。在接下來(lái)的幾十年中,該技術(shù)得到了發(fā)展,傳感器變得小型化并能檢測(cè)多種目標(biāo)氣體。其中許多儀器使用電化學(xué)氣體傳感器。這種傳感器技術(shù)需要專門的前端電路來(lái)進(jìn)行偏置和測(cè)量。
氣體檢測(cè)儀器廣泛應(yīng)用于從家用空氣質(zhì)量測(cè)量設(shè)備到工業(yè)有毒氣體檢測(cè)解決方案的各種應(yīng)用。電化學(xué)氣體傳感器應(yīng)用的歷史可以追溯到1950年代,當(dāng)時(shí)開發(fā)了用于氧氣監(jiān)測(cè)的電化學(xué)傳感器。這種技術(shù)的首批應(yīng)用之一是葡萄糖生物傳感器,用于測(cè)量葡萄糖的缺氧情況。在接下來(lái)的幾十年中,該技術(shù)得到了發(fā)展,傳感器變得小型化并能檢測(cè)多種目標(biāo)氣體。其中許多儀器使用電化學(xué)氣體傳感器。這種傳感器技術(shù)需要專門的前端電路來(lái)進(jìn)行偏置和測(cè)量。
利用內(nèi)置診斷特性(例如阻抗頻譜或偏置電壓脈沖與斜坡),可以檢查傳感器健康狀況,補(bǔ)償老化或溫度引起的精度漂移,估計(jì)傳感器的剩余壽命而無(wú)需用戶干預(yù)。這種功能允許各個(gè)邊緣節(jié)點(diǎn)更換智能、精確的傳感器。集成超低功耗微控制器直接偏置電化學(xué)氣體傳感器并運(yùn)行板載診斷算法。
圖1:典型電化學(xué)氣體傳感器信號(hào)鏈
電化學(xué)氣體傳感器基礎(chǔ)知識(shí)
圖2所示電路顯示了電化學(xué)氣體傳感器如何連接到恒電位儀電路,以及如何對(duì)其進(jìn)行偏置和測(cè)量。常見的2引線、3引線和4引線電化學(xué)氣體傳感器可以互換使用。該信號(hào)鏈的集成顯著縮減了傳感器節(jié)點(diǎn)的成本、尺寸、復(fù)雜性和功耗。
圖2:電化學(xué)氣體傳感器與恒電位儀連接示意電路圖。
電化學(xué)氣體檢測(cè)的基本原理是目標(biāo)氣體在電極處發(fā)生氧化或還原,進(jìn)而產(chǎn)生電流,測(cè)量此電流便可檢測(cè)到目標(biāo)氣體。最常見的傳感器有兩個(gè)或三個(gè)電極。一些傳感器還有第四個(gè)電極。在3電極配置中,各電極分別被稱為工作電極(WE,也稱為檢測(cè)電極(SE))、參比電極(RE)和反電極(CE)。上圖為這種電化學(xué)單元的簡(jiǎn)化示意圖。
目標(biāo)氣體通過(guò)多孔工作電極進(jìn)入傳感器室并擴(kuò)散到電解質(zhì)(最常見的是酸)中,在那里它被氧化或還原。此反應(yīng)產(chǎn)生的電流隨即被外部恒電位儀電路檢測(cè)到,并轉(zhuǎn)換為相應(yīng)的電壓電平。常常需要在傳感器電極上施加連續(xù)或脈沖式偏置電壓,以確保性能最優(yōu)。對(duì)于3電極傳感器,偏置電壓施加于RE和WE之間。CE處發(fā)生與RE和WE之間等量但相反的反應(yīng)。如果WE處發(fā)生還原反應(yīng),則CE處發(fā)生氧化反應(yīng)。
圖3:電化學(xué)氣體傳感器—簡(jiǎn)化圖
電化學(xué)氣體傳感器的應(yīng)用及相關(guān)參數(shù)計(jì)算
氣體傳感器的數(shù)據(jù)手冊(cè)規(guī)定了傳感器正常電化學(xué)操作所需的偏置電壓。偏置電壓是指RE和SE/WE之間的電壓差。該差分電壓由低功耗數(shù)模轉(zhuǎn)換器(LPDACx)的輸出設(shè)置。LPDACx有兩個(gè)輸出:一個(gè)12位分辨率的輸出(VBIASx)和一個(gè)6位分辨率的輸出(VZEROx)。LPDACx的VBIASx輸出內(nèi)部連接到功率放大器(PA)的同相端。在外部,VBIASx必須通過(guò)100 nF電容連接到AGND引腳。PA放大器的輸出直接連到傳感器的CE。至PA放大器反相端的反饋來(lái)自傳感器的RE引腳;因此,VBIASx電壓決定RE引腳電壓。
LPDACx的VZEROx輸出內(nèi)部連接到低功耗跨阻放大器LPTIAx的同相端。請(qǐng)勿將此引腳用作外部電路的電壓源。電化學(xué)氣體傳感器本身僅通過(guò)REx、CEx和SEx端子連接到ADuCM355,可選的第四個(gè)端子可用于診斷電極(DEx),如圖2所示。
使用下式得出傳感器的有效偏置電壓:
VBIAS_EFF = VVBIAS – VVZERO
建議將VZERO電壓設(shè)置為1100 mV,然后根據(jù)傳感器數(shù)據(jù)手冊(cè)中的傳感器偏置電壓值設(shè)置VBIAS電壓。
根據(jù)傳感器類型,偏置電壓也可能為負(fù)。以下公式說(shuō)明了如何配置DAC的正偏置電壓和負(fù)偏置電壓。
當(dāng)所需偏置電壓為正時(shí)(12位輸出 ≥ 6位輸出),
VVBIAS = 0.2 V + (LPDACDAT[11:0] × 0.54 mV) +0.54 mV
VVZERO = 0.2 V + (LPDACDAT[17:12] × 34.38 mV)
當(dāng)所需偏置電壓為負(fù)時(shí)(12位輸出 < 6位輸出),
VVBIAS = 0.2 V + (LPDACDAT[11:0] × 0.54 mV)
VVZERO = 0.2 V + (LPDACDAT[17:12] × 34.38 mV)
其中:
LPDACDAT為低功耗DAC的數(shù)據(jù)輸出控制寄存器。
0.54 mV約為12位DAC的1 LSB。
34.38 mV約為6位DAC的1 LSB。
傳感器的檢測(cè)/工作電極(WE)通過(guò)反相輸入引腳SEx連接到LPTIAx。LPTIAx具有可編程負(fù)載電阻(RLOAD)和可編程增益電阻(RTIA)。流入/流出傳感器SE電極的電流反映傳感器周圍的大氣中的目標(biāo)氣體。傳感器數(shù)據(jù)手冊(cè)用“電流/ppm”來(lái)表示該量。LPTIAx放大器將電流轉(zhuǎn)換為電壓,然后通過(guò)模數(shù)轉(zhuǎn)換器(ADC)進(jìn)行緩沖和測(cè)量。選擇RTIA電阻值,使其最大化ADC輸入范圍±900 mV。RTIA值使用下式計(jì)算:
其中:
0.9 V為ADC輸入范圍。
Sensitivity定義為nA/ppm。
Max_Range為傳感器的最大范圍,單位為ppm。
微控制器可以計(jì)算流入/流出SEx引腳的電流,并確定目標(biāo)氣體的ppm水平。
基于ADuCM355的單芯片電化學(xué)測(cè)量系統(tǒng)
ADuCM355是一款片內(nèi)系統(tǒng),可控制和測(cè)量電化學(xué)傳感器和生物傳感器,該器件是一款基于Arm® Cortex™-M3處理器的超低功耗混合信號(hào)微控制器,具有電流、電壓和阻抗測(cè)量功能。非常適合用于電化學(xué)氣體檢測(cè)系統(tǒng)設(shè)計(jì),以及食品質(zhì)量、生命科學(xué)和生物感測(cè)分析等。
圖4:ADuCM355的簡(jiǎn)化功能框圖
ADuCM355提供了克服電化學(xué)氣體檢測(cè)技術(shù)挑戰(zhàn)的手段。兩個(gè)測(cè)量通道不僅支持最常見的3電極氣體傳感器,還支持4電極傳感器配置。第四個(gè)電極既可用于診斷目的,也可以在雙重氣體傳感器中用作第二目標(biāo)氣體的工作電極。任一恒電位儀也可以配置為休眠模式以降低功耗,同時(shí)保持傳感器偏置電壓,從而減少傳感器在正常運(yùn)行之前可能需要的穩(wěn)定時(shí)間。模擬硬件加速器模塊支持傳感器診斷測(cè)量,例如電化學(xué)阻抗譜和計(jì)時(shí)安培分析法。集成的微控制器可用于運(yùn)行補(bǔ)償算法、存儲(chǔ)校準(zhǔn)參數(shù)以及運(yùn)行用戶應(yīng)用程序。ADuCM355在設(shè)計(jì)時(shí)還考慮了EMC要求,并經(jīng)過(guò)預(yù)先測(cè)試,符合EN 50270標(biāo)準(zhǔn)。
如果應(yīng)用不需要集成微控制器,可以使用僅有前端的版本——AD5940
傳感器健康狀況診斷和預(yù)期壽命
不同制造商以及針對(duì)不同目標(biāo)氣體的電化學(xué)氣體傳感器,壽命也會(huì)不同。有關(guān)預(yù)期壽命的信息可在傳感器制造商的數(shù)據(jù)手冊(cè)中找到。然而,實(shí)際壽命強(qiáng)烈依賴于儲(chǔ)存和工作條件。電化學(xué)氣體傳感器的壽命和需要定期校準(zhǔn),是這類傳感器最具挑戰(zhàn)性的方面。因此,人們希望能夠直接在儀器中監(jiān)測(cè)傳感器的健康狀況。
ADuCM355內(nèi)置波形發(fā)生器和離散傅里葉變換(DFT)模塊,通過(guò)對(duì)反電極應(yīng)用交流信號(hào)掃描可實(shí)現(xiàn)阻抗頻譜測(cè)量。該測(cè)量可顯示電極之間電荷轉(zhuǎn)移的質(zhì)量,從而有效檢測(cè)傳感器電解質(zhì)的老化情況。實(shí)驗(yàn)室測(cè)試表明傳感器的阻抗和靈敏度之間有很好的相關(guān)性。
檢測(cè)傳感器健康狀況的其他方法包括脈沖測(cè)試和斜坡測(cè)試。這些測(cè)試是在偏置電壓之上施加一個(gè)電壓脈沖或斜坡,以分別測(cè)試傳感器響應(yīng)度和電荷轉(zhuǎn)移。
所有這些測(cè)量結(jié)果與ADuCM355上運(yùn)行的算法相結(jié)合,有助于改善電化學(xué)氣體傳感器的精度、性能和壽命。為實(shí)現(xiàn)這種級(jí)別的智能診斷和預(yù)測(cè),需要通過(guò)測(cè)試(例如加速老化)來(lái)獲得大量傳感器的特征。
基于超低功耗ARM Cortex-M3處理器的Arduino無(wú)線開發(fā)平臺(tái)
傳感器板上提供了外部溫度和濕度傳感器。它通過(guò)I2C接口連接到ADuCM355。大多數(shù)電化學(xué)傳感器的性能會(huì)隨溫度和濕度而變化,因此需要補(bǔ)償這些影響。此外,值得一提的是,該電路使用3引線電化學(xué)氣體傳感器(CE、RE、WE)進(jìn)行測(cè)試。但是,它也可以支持4引線(CE、RE、WE1、WE2)和2引線傳感器(CE和WE)。四引線傳感器有多種電極配置。第四電極可用作附加診斷電極(DE)。有些傳感器可以檢測(cè)兩種氣體,在這種情況下,第四電極被配置為工作電極(例如CO和H2S組合傳感器)。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請(qǐng)電話或者郵箱聯(lián)系小編進(jìn)行侵刪。
特別推薦
- 增強(qiáng)視覺傳感器功能:3D圖像拼接算法幫助擴(kuò)大視場(chǎng)
- PNP 晶體管:特性和應(yīng)用
- 使用IO-Link收發(fā)器管理數(shù)據(jù)鏈路如何簡(jiǎn)化微控制器選擇
- 用好 DMA控制器這兩種模式 MCU效率大大提高!
- 深入分析帶耦合電感多相降壓轉(zhuǎn)換器的電壓紋波問題
- Honda(本田)與瑞薩簽署協(xié)議,共同開發(fā)用于軟件定義汽車的高性能SoC
- 第13講:超小型全SiC DIPIPM
技術(shù)文章更多>>
- 解決模擬輸入IEC系統(tǒng)保護(hù)問題
- 當(dāng)過(guò)壓持續(xù)較長(zhǎng)時(shí)間時(shí),使用開關(guān)浪涌抑制器
- 用于狀態(tài)監(jiān)測(cè)的振動(dòng)傳感器
- 解鎖多行業(yè)解決方案——AHTE 2025觀眾預(yù)登記開啟!
- 汽車智造全“新”體驗(yàn)——AMTS 2025觀眾預(yù)登記開啟!
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動(dòng)避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
等離子顯示屏
低頻電感
低通濾波器
低音炮電路
滌綸電容
點(diǎn)膠設(shè)備
電池
電池管理系統(tǒng)
電磁蜂鳴器
電磁兼容
電磁爐危害
電動(dòng)車
電動(dòng)工具
電動(dòng)汽車
電感
電工電路
電機(jī)控制
電解電容
電纜連接器
電力電子
電力繼電器
電力線通信
電流保險(xiǎn)絲
電流表
電流傳感器
電流互感器
電路保護(hù)
電路圖
電路圖符號(hào)
電路圖知識(shí)